This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpl0.p | |- P = ( I mPoly R ) |
|
| mpl0.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mpl0.o | |- O = ( 0g ` R ) |
||
| mpl0.z | |- .0. = ( 0g ` P ) |
||
| mpl0.i | |- ( ph -> I e. W ) |
||
| mpl0.r | |- ( ph -> R e. Grp ) |
||
| Assertion | mpl0 | |- ( ph -> .0. = ( D X. { O } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpl0.p | |- P = ( I mPoly R ) |
|
| 2 | mpl0.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 3 | mpl0.o | |- O = ( 0g ` R ) |
|
| 4 | mpl0.z | |- .0. = ( 0g ` P ) |
|
| 5 | mpl0.i | |- ( ph -> I e. W ) |
|
| 6 | mpl0.r | |- ( ph -> R e. Grp ) |
|
| 7 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 8 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 9 | 7 1 8 5 6 | mplsubg | |- ( ph -> ( Base ` P ) e. ( SubGrp ` ( I mPwSer R ) ) ) |
| 10 | 1 7 8 | mplval2 | |- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 11 | eqid | |- ( 0g ` ( I mPwSer R ) ) = ( 0g ` ( I mPwSer R ) ) |
|
| 12 | 10 11 | subg0 | |- ( ( Base ` P ) e. ( SubGrp ` ( I mPwSer R ) ) -> ( 0g ` ( I mPwSer R ) ) = ( 0g ` P ) ) |
| 13 | 9 12 | syl | |- ( ph -> ( 0g ` ( I mPwSer R ) ) = ( 0g ` P ) ) |
| 14 | 7 5 6 2 3 11 | psr0 | |- ( ph -> ( 0g ` ( I mPwSer R ) ) = ( D X. { O } ) ) |
| 15 | 13 14 | eqtr3d | |- ( ph -> ( 0g ` P ) = ( D X. { O } ) ) |
| 16 | 4 15 | eqtrid | |- ( ph -> .0. = ( D X. { O } ) ) |