This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015) (Proof shortened by AV, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubg.s | |- S = ( I mPwSer R ) |
|
| mplsubg.p | |- P = ( I mPoly R ) |
||
| mplsubg.u | |- U = ( Base ` P ) |
||
| mplsubg.i | |- ( ph -> I e. W ) |
||
| mplsubg.r | |- ( ph -> R e. Grp ) |
||
| Assertion | mplsubg | |- ( ph -> U e. ( SubGrp ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s | |- S = ( I mPwSer R ) |
|
| 2 | mplsubg.p | |- P = ( I mPoly R ) |
|
| 3 | mplsubg.u | |- U = ( Base ` P ) |
|
| 4 | mplsubg.i | |- ( ph -> I e. W ) |
|
| 5 | mplsubg.r | |- ( ph -> R e. Grp ) |
|
| 6 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 7 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 8 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 9 | 0fi | |- (/) e. Fin |
|
| 10 | 9 | a1i | |- ( ph -> (/) e. Fin ) |
| 11 | unfi | |- ( ( x e. Fin /\ y e. Fin ) -> ( x u. y ) e. Fin ) |
|
| 12 | 11 | adantl | |- ( ( ph /\ ( x e. Fin /\ y e. Fin ) ) -> ( x u. y ) e. Fin ) |
| 13 | ssfi | |- ( ( x e. Fin /\ y C_ x ) -> y e. Fin ) |
|
| 14 | 13 | adantl | |- ( ( ph /\ ( x e. Fin /\ y C_ x ) ) -> y e. Fin ) |
| 15 | 1 2 3 4 | mplsubglem2 | |- ( ph -> U = { g e. ( Base ` S ) | ( g supp ( 0g ` R ) ) e. Fin } ) |
| 16 | 1 6 7 8 4 10 12 14 15 5 | mplsubglem | |- ( ph -> U e. ( SubGrp ` S ) ) |