This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismon.b | |- B = ( Base ` C ) |
|
| ismon.h | |- H = ( Hom ` C ) |
||
| ismon.o | |- .x. = ( comp ` C ) |
||
| ismon.s | |- M = ( Mono ` C ) |
||
| ismon.c | |- ( ph -> C e. Cat ) |
||
| ismon.x | |- ( ph -> X e. B ) |
||
| ismon.y | |- ( ph -> Y e. B ) |
||
| moni.z | |- ( ph -> Z e. B ) |
||
| moni.f | |- ( ph -> F e. ( X M Y ) ) |
||
| moni.g | |- ( ph -> G e. ( Z H X ) ) |
||
| moni.k | |- ( ph -> K e. ( Z H X ) ) |
||
| Assertion | moni | |- ( ph -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) <-> G = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismon.b | |- B = ( Base ` C ) |
|
| 2 | ismon.h | |- H = ( Hom ` C ) |
|
| 3 | ismon.o | |- .x. = ( comp ` C ) |
|
| 4 | ismon.s | |- M = ( Mono ` C ) |
|
| 5 | ismon.c | |- ( ph -> C e. Cat ) |
|
| 6 | ismon.x | |- ( ph -> X e. B ) |
|
| 7 | ismon.y | |- ( ph -> Y e. B ) |
|
| 8 | moni.z | |- ( ph -> Z e. B ) |
|
| 9 | moni.f | |- ( ph -> F e. ( X M Y ) ) |
|
| 10 | moni.g | |- ( ph -> G e. ( Z H X ) ) |
|
| 11 | moni.k | |- ( ph -> K e. ( Z H X ) ) |
|
| 12 | 1 2 3 4 5 6 7 | ismon2 | |- ( ph -> ( F e. ( X M Y ) <-> ( F e. ( X H Y ) /\ A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) ) |
| 13 | 9 12 | mpbid | |- ( ph -> ( F e. ( X H Y ) /\ A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) |
| 14 | 13 | simprd | |- ( ph -> A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) |
| 15 | 10 | adantr | |- ( ( ph /\ z = Z ) -> G e. ( Z H X ) ) |
| 16 | simpr | |- ( ( ph /\ z = Z ) -> z = Z ) |
|
| 17 | 16 | oveq1d | |- ( ( ph /\ z = Z ) -> ( z H X ) = ( Z H X ) ) |
| 18 | 15 17 | eleqtrrd | |- ( ( ph /\ z = Z ) -> G e. ( z H X ) ) |
| 19 | 11 | adantr | |- ( ( ph /\ z = Z ) -> K e. ( Z H X ) ) |
| 20 | 19 17 | eleqtrrd | |- ( ( ph /\ z = Z ) -> K e. ( z H X ) ) |
| 21 | 20 | adantr | |- ( ( ( ph /\ z = Z ) /\ g = G ) -> K e. ( z H X ) ) |
| 22 | simpllr | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> z = Z ) |
|
| 23 | 22 | opeq1d | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> <. z , X >. = <. Z , X >. ) |
| 24 | 23 | oveq1d | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( <. z , X >. .x. Y ) = ( <. Z , X >. .x. Y ) ) |
| 25 | eqidd | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> F = F ) |
|
| 26 | simplr | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> g = G ) |
|
| 27 | 24 25 26 | oveq123d | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. Z , X >. .x. Y ) G ) ) |
| 28 | simpr | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> h = K ) |
|
| 29 | 24 25 28 | oveq123d | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( F ( <. z , X >. .x. Y ) h ) = ( F ( <. Z , X >. .x. Y ) K ) ) |
| 30 | 27 29 | eqeq12d | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) <-> ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) ) ) |
| 31 | 26 28 | eqeq12d | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( g = h <-> G = K ) ) |
| 32 | 30 31 | imbi12d | |- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) <-> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) ) |
| 33 | 21 32 | rspcdv | |- ( ( ( ph /\ z = Z ) /\ g = G ) -> ( A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) ) |
| 34 | 18 33 | rspcimdv | |- ( ( ph /\ z = Z ) -> ( A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) ) |
| 35 | 8 34 | rspcimdv | |- ( ph -> ( A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) ) |
| 36 | 14 35 | mpd | |- ( ph -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) |
| 37 | oveq2 | |- ( G = K -> ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) ) |
|
| 38 | 36 37 | impbid1 | |- ( ph -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) <-> G = K ) ) |