This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a section of G , then G is an epimorphism. Proposition 7.42 of Adamek p. 112. An epimorphism that arises from a section is also known as asplit epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectepi.b | |- B = ( Base ` C ) |
|
| sectepi.e | |- E = ( Epi ` C ) |
||
| sectepi.s | |- S = ( Sect ` C ) |
||
| sectepi.c | |- ( ph -> C e. Cat ) |
||
| sectepi.x | |- ( ph -> X e. B ) |
||
| sectepi.y | |- ( ph -> Y e. B ) |
||
| sectepi.1 | |- ( ph -> F ( X S Y ) G ) |
||
| Assertion | sectepi | |- ( ph -> G e. ( Y E X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectepi.b | |- B = ( Base ` C ) |
|
| 2 | sectepi.e | |- E = ( Epi ` C ) |
|
| 3 | sectepi.s | |- S = ( Sect ` C ) |
|
| 4 | sectepi.c | |- ( ph -> C e. Cat ) |
|
| 5 | sectepi.x | |- ( ph -> X e. B ) |
|
| 6 | sectepi.y | |- ( ph -> Y e. B ) |
|
| 7 | sectepi.1 | |- ( ph -> F ( X S Y ) G ) |
|
| 8 | eqid | |- ( oppCat ` C ) = ( oppCat ` C ) |
|
| 9 | 8 1 | oppcbas | |- B = ( Base ` ( oppCat ` C ) ) |
| 10 | eqid | |- ( Mono ` ( oppCat ` C ) ) = ( Mono ` ( oppCat ` C ) ) |
|
| 11 | eqid | |- ( Sect ` ( oppCat ` C ) ) = ( Sect ` ( oppCat ` C ) ) |
|
| 12 | 8 | oppccat | |- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 13 | 4 12 | syl | |- ( ph -> ( oppCat ` C ) e. Cat ) |
| 14 | 1 8 4 5 6 3 11 | oppcsect | |- ( ph -> ( G ( X ( Sect ` ( oppCat ` C ) ) Y ) F <-> F ( X S Y ) G ) ) |
| 15 | 7 14 | mpbird | |- ( ph -> G ( X ( Sect ` ( oppCat ` C ) ) Y ) F ) |
| 16 | 9 10 11 13 5 6 15 | sectmon | |- ( ph -> G e. ( X ( Mono ` ( oppCat ` C ) ) Y ) ) |
| 17 | 8 4 10 2 | oppcmon | |- ( ph -> ( X ( Mono ` ( oppCat ` C ) ) Y ) = ( Y E X ) ) |
| 18 | 16 17 | eleqtrd | |- ( ph -> G e. ( Y E X ) ) |