This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modfzo0difsn | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | |- ( K e. ( ( 0 ..^ N ) \ { J } ) -> K e. ( 0 ..^ N ) ) |
|
| 2 | elfzoelz | |- ( K e. ( 0 ..^ N ) -> K e. ZZ ) |
|
| 3 | 2 | zred | |- ( K e. ( 0 ..^ N ) -> K e. RR ) |
| 4 | 1 3 | syl | |- ( K e. ( ( 0 ..^ N ) \ { J } ) -> K e. RR ) |
| 5 | elfzoelz | |- ( J e. ( 0 ..^ N ) -> J e. ZZ ) |
|
| 6 | 5 | zred | |- ( J e. ( 0 ..^ N ) -> J e. RR ) |
| 7 | leloe | |- ( ( K e. RR /\ J e. RR ) -> ( K <_ J <-> ( K < J \/ K = J ) ) ) |
|
| 8 | 4 6 7 | syl2anr | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( K <_ J <-> ( K < J \/ K = J ) ) ) |
| 9 | elfzo0 | |- ( K e. ( 0 ..^ N ) <-> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
|
| 10 | elfzo0 | |- ( J e. ( 0 ..^ N ) <-> ( J e. NN0 /\ N e. NN /\ J < N ) ) |
|
| 11 | nn0cn | |- ( K e. NN0 -> K e. CC ) |
|
| 12 | 11 | adantr | |- ( ( K e. NN0 /\ K < N ) -> K e. CC ) |
| 13 | 12 | adantl | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> K e. CC ) |
| 14 | nn0cn | |- ( J e. NN0 -> J e. CC ) |
|
| 15 | 14 | 3ad2ant1 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> J e. CC ) |
| 16 | 15 | adantr | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> J e. CC ) |
| 17 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 18 | 17 | 3ad2ant2 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. CC ) |
| 19 | 18 | adantr | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> N e. CC ) |
| 20 | 13 16 19 | subadd23d | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> ( ( K - J ) + N ) = ( K + ( N - J ) ) ) |
| 21 | simpl | |- ( ( K e. NN0 /\ K < N ) -> K e. NN0 ) |
|
| 22 | nn0z | |- ( J e. NN0 -> J e. ZZ ) |
|
| 23 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 24 | znnsub | |- ( ( J e. ZZ /\ N e. ZZ ) -> ( J < N <-> ( N - J ) e. NN ) ) |
|
| 25 | 22 23 24 | syl2an | |- ( ( J e. NN0 /\ N e. NN ) -> ( J < N <-> ( N - J ) e. NN ) ) |
| 26 | 25 | biimp3a | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( N - J ) e. NN ) |
| 27 | nn0nnaddcl | |- ( ( K e. NN0 /\ ( N - J ) e. NN ) -> ( K + ( N - J ) ) e. NN ) |
|
| 28 | 21 26 27 | syl2anr | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> ( K + ( N - J ) ) e. NN ) |
| 29 | 20 28 | eqeltrd | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> ( ( K - J ) + N ) e. NN ) |
| 30 | 29 | adantr | |- ( ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) /\ K < J ) -> ( ( K - J ) + N ) e. NN ) |
| 31 | simp2 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. NN ) |
|
| 32 | 31 | adantr | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> N e. NN ) |
| 33 | 32 | adantr | |- ( ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) /\ K < J ) -> N e. NN ) |
| 34 | nn0re | |- ( K e. NN0 -> K e. RR ) |
|
| 35 | 34 | adantr | |- ( ( K e. NN0 /\ K < N ) -> K e. RR ) |
| 36 | 35 | adantl | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> K e. RR ) |
| 37 | nn0re | |- ( J e. NN0 -> J e. RR ) |
|
| 38 | 37 | 3ad2ant1 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> J e. RR ) |
| 39 | 38 | adantr | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> J e. RR ) |
| 40 | 36 39 | sublt0d | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> ( ( K - J ) < 0 <-> K < J ) ) |
| 41 | 40 | bicomd | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> ( K < J <-> ( K - J ) < 0 ) ) |
| 42 | 41 | biimpa | |- ( ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) /\ K < J ) -> ( K - J ) < 0 ) |
| 43 | resubcl | |- ( ( K e. RR /\ J e. RR ) -> ( K - J ) e. RR ) |
|
| 44 | 35 38 43 | syl2anr | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> ( K - J ) e. RR ) |
| 45 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 46 | 45 | 3ad2ant2 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. RR ) |
| 47 | 46 | adantr | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> N e. RR ) |
| 48 | 44 47 | jca | |- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) -> ( ( K - J ) e. RR /\ N e. RR ) ) |
| 49 | 48 | adantr | |- ( ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) /\ K < J ) -> ( ( K - J ) e. RR /\ N e. RR ) ) |
| 50 | ltaddnegr | |- ( ( ( K - J ) e. RR /\ N e. RR ) -> ( ( K - J ) < 0 <-> ( ( K - J ) + N ) < N ) ) |
|
| 51 | 49 50 | syl | |- ( ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) /\ K < J ) -> ( ( K - J ) < 0 <-> ( ( K - J ) + N ) < N ) ) |
| 52 | 42 51 | mpbid | |- ( ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) /\ K < J ) -> ( ( K - J ) + N ) < N ) |
| 53 | elfzo1 | |- ( ( ( K - J ) + N ) e. ( 1 ..^ N ) <-> ( ( ( K - J ) + N ) e. NN /\ N e. NN /\ ( ( K - J ) + N ) < N ) ) |
|
| 54 | 30 33 52 53 | syl3anbrc | |- ( ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ ( K e. NN0 /\ K < N ) ) /\ K < J ) -> ( ( K - J ) + N ) e. ( 1 ..^ N ) ) |
| 55 | 54 | exp31 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( ( K e. NN0 /\ K < N ) -> ( K < J -> ( ( K - J ) + N ) e. ( 1 ..^ N ) ) ) ) |
| 56 | 10 55 | sylbi | |- ( J e. ( 0 ..^ N ) -> ( ( K e. NN0 /\ K < N ) -> ( K < J -> ( ( K - J ) + N ) e. ( 1 ..^ N ) ) ) ) |
| 57 | 56 | com12 | |- ( ( K e. NN0 /\ K < N ) -> ( J e. ( 0 ..^ N ) -> ( K < J -> ( ( K - J ) + N ) e. ( 1 ..^ N ) ) ) ) |
| 58 | 57 | 3adant2 | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( J e. ( 0 ..^ N ) -> ( K < J -> ( ( K - J ) + N ) e. ( 1 ..^ N ) ) ) ) |
| 59 | 9 58 | sylbi | |- ( K e. ( 0 ..^ N ) -> ( J e. ( 0 ..^ N ) -> ( K < J -> ( ( K - J ) + N ) e. ( 1 ..^ N ) ) ) ) |
| 60 | 1 59 | syl | |- ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( J e. ( 0 ..^ N ) -> ( K < J -> ( ( K - J ) + N ) e. ( 1 ..^ N ) ) ) ) |
| 61 | 60 | impcom | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( K < J -> ( ( K - J ) + N ) e. ( 1 ..^ N ) ) ) |
| 62 | 61 | impcom | |- ( ( K < J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> ( ( K - J ) + N ) e. ( 1 ..^ N ) ) |
| 63 | oveq1 | |- ( i = ( ( K - J ) + N ) -> ( i + J ) = ( ( ( K - J ) + N ) + J ) ) |
|
| 64 | 2 | zcnd | |- ( K e. ( 0 ..^ N ) -> K e. CC ) |
| 65 | 64 | adantr | |- ( ( K e. ( 0 ..^ N ) /\ ( J e. NN0 /\ N e. NN ) ) -> K e. CC ) |
| 66 | 14 | adantr | |- ( ( J e. NN0 /\ N e. NN ) -> J e. CC ) |
| 67 | 66 | adantl | |- ( ( K e. ( 0 ..^ N ) /\ ( J e. NN0 /\ N e. NN ) ) -> J e. CC ) |
| 68 | 17 | adantl | |- ( ( J e. NN0 /\ N e. NN ) -> N e. CC ) |
| 69 | 68 | adantl | |- ( ( K e. ( 0 ..^ N ) /\ ( J e. NN0 /\ N e. NN ) ) -> N e. CC ) |
| 70 | 65 67 69 | 3jca | |- ( ( K e. ( 0 ..^ N ) /\ ( J e. NN0 /\ N e. NN ) ) -> ( K e. CC /\ J e. CC /\ N e. CC ) ) |
| 71 | 70 | ex | |- ( K e. ( 0 ..^ N ) -> ( ( J e. NN0 /\ N e. NN ) -> ( K e. CC /\ J e. CC /\ N e. CC ) ) ) |
| 72 | 1 71 | syl | |- ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( ( J e. NN0 /\ N e. NN ) -> ( K e. CC /\ J e. CC /\ N e. CC ) ) ) |
| 73 | 72 | com12 | |- ( ( J e. NN0 /\ N e. NN ) -> ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( K e. CC /\ J e. CC /\ N e. CC ) ) ) |
| 74 | 73 | 3adant3 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( K e. CC /\ J e. CC /\ N e. CC ) ) ) |
| 75 | 10 74 | sylbi | |- ( J e. ( 0 ..^ N ) -> ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( K e. CC /\ J e. CC /\ N e. CC ) ) ) |
| 76 | 75 | imp | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( K e. CC /\ J e. CC /\ N e. CC ) ) |
| 77 | 76 | adantl | |- ( ( K < J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> ( K e. CC /\ J e. CC /\ N e. CC ) ) |
| 78 | nppcan | |- ( ( K e. CC /\ J e. CC /\ N e. CC ) -> ( ( ( K - J ) + N ) + J ) = ( K + N ) ) |
|
| 79 | 77 78 | syl | |- ( ( K < J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> ( ( ( K - J ) + N ) + J ) = ( K + N ) ) |
| 80 | 63 79 | sylan9eqr | |- ( ( ( K < J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) /\ i = ( ( K - J ) + N ) ) -> ( i + J ) = ( K + N ) ) |
| 81 | 80 | oveq1d | |- ( ( ( K < J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) /\ i = ( ( K - J ) + N ) ) -> ( ( i + J ) mod N ) = ( ( K + N ) mod N ) ) |
| 82 | 81 | eqeq2d | |- ( ( ( K < J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) /\ i = ( ( K - J ) + N ) ) -> ( K = ( ( i + J ) mod N ) <-> K = ( ( K + N ) mod N ) ) ) |
| 83 | 9 | biimpi | |- ( K e. ( 0 ..^ N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
| 84 | 83 | a1d | |- ( K e. ( 0 ..^ N ) -> ( J e. ( 0 ..^ N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) ) |
| 85 | 1 84 | syl | |- ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( J e. ( 0 ..^ N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) ) |
| 86 | 85 | impcom | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
| 87 | 86 | adantl | |- ( ( K < J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
| 88 | addmodidr | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( ( K + N ) mod N ) = K ) |
|
| 89 | 88 | eqcomd | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> K = ( ( K + N ) mod N ) ) |
| 90 | 87 89 | syl | |- ( ( K < J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> K = ( ( K + N ) mod N ) ) |
| 91 | 62 82 90 | rspcedvd | |- ( ( K < J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) |
| 92 | 91 | ex | |- ( K < J -> ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 93 | eldifsn | |- ( K e. ( ( 0 ..^ N ) \ { J } ) <-> ( K e. ( 0 ..^ N ) /\ K =/= J ) ) |
|
| 94 | eqneqall | |- ( K = J -> ( K =/= J -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
|
| 95 | 94 | com12 | |- ( K =/= J -> ( K = J -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 96 | 95 | adantl | |- ( ( K e. ( 0 ..^ N ) /\ K =/= J ) -> ( K = J -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 97 | 93 96 | sylbi | |- ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( K = J -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 98 | 97 | adantl | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( K = J -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 99 | 98 | com12 | |- ( K = J -> ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 100 | 92 99 | jaoi | |- ( ( K < J \/ K = J ) -> ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 101 | 100 | com12 | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( ( K < J \/ K = J ) -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 102 | 8 101 | sylbid | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( K <_ J -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 103 | 102 | com12 | |- ( K <_ J -> ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 104 | ltnle | |- ( ( J e. RR /\ K e. RR ) -> ( J < K <-> -. K <_ J ) ) |
|
| 105 | 6 4 104 | syl2an | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( J < K <-> -. K <_ J ) ) |
| 106 | 105 | bicomd | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( -. K <_ J <-> J < K ) ) |
| 107 | 22 | 3ad2ant1 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> J e. ZZ ) |
| 108 | nn0z | |- ( K e. NN0 -> K e. ZZ ) |
|
| 109 | 108 | adantr | |- ( ( K e. NN0 /\ K < N ) -> K e. ZZ ) |
| 110 | znnsub | |- ( ( J e. ZZ /\ K e. ZZ ) -> ( J < K <-> ( K - J ) e. NN ) ) |
|
| 111 | 107 109 110 | syl2anr | |- ( ( ( K e. NN0 /\ K < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( J < K <-> ( K - J ) e. NN ) ) |
| 112 | 111 | biimpa | |- ( ( ( ( K e. NN0 /\ K < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) /\ J < K ) -> ( K - J ) e. NN ) |
| 113 | 31 | adantl | |- ( ( ( K e. NN0 /\ K < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> N e. NN ) |
| 114 | 113 | adantr | |- ( ( ( ( K e. NN0 /\ K < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) /\ J < K ) -> N e. NN ) |
| 115 | nn0ge0 | |- ( J e. NN0 -> 0 <_ J ) |
|
| 116 | 115 | 3ad2ant1 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> 0 <_ J ) |
| 117 | 116 | adantl | |- ( ( K e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> 0 <_ J ) |
| 118 | subge02 | |- ( ( K e. RR /\ J e. RR ) -> ( 0 <_ J <-> ( K - J ) <_ K ) ) |
|
| 119 | 34 38 118 | syl2an | |- ( ( K e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( 0 <_ J <-> ( K - J ) <_ K ) ) |
| 120 | 117 119 | mpbid | |- ( ( K e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( K - J ) <_ K ) |
| 121 | 38 | adantl | |- ( ( K e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> J e. RR ) |
| 122 | 34 | adantr | |- ( ( K e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> K e. RR ) |
| 123 | 46 | adantl | |- ( ( K e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> N e. RR ) |
| 124 | 121 122 123 | 3jca | |- ( ( K e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( J e. RR /\ K e. RR /\ N e. RR ) ) |
| 125 | 43 | ancoms | |- ( ( J e. RR /\ K e. RR ) -> ( K - J ) e. RR ) |
| 126 | 125 | 3adant3 | |- ( ( J e. RR /\ K e. RR /\ N e. RR ) -> ( K - J ) e. RR ) |
| 127 | simp2 | |- ( ( J e. RR /\ K e. RR /\ N e. RR ) -> K e. RR ) |
|
| 128 | simp3 | |- ( ( J e. RR /\ K e. RR /\ N e. RR ) -> N e. RR ) |
|
| 129 | 126 127 128 | 3jca | |- ( ( J e. RR /\ K e. RR /\ N e. RR ) -> ( ( K - J ) e. RR /\ K e. RR /\ N e. RR ) ) |
| 130 | 124 129 | syl | |- ( ( K e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( ( K - J ) e. RR /\ K e. RR /\ N e. RR ) ) |
| 131 | lelttr | |- ( ( ( K - J ) e. RR /\ K e. RR /\ N e. RR ) -> ( ( ( K - J ) <_ K /\ K < N ) -> ( K - J ) < N ) ) |
|
| 132 | 130 131 | syl | |- ( ( K e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( ( ( K - J ) <_ K /\ K < N ) -> ( K - J ) < N ) ) |
| 133 | 120 132 | mpand | |- ( ( K e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( K < N -> ( K - J ) < N ) ) |
| 134 | 133 | impancom | |- ( ( K e. NN0 /\ K < N ) -> ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( K - J ) < N ) ) |
| 135 | 134 | imp | |- ( ( ( K e. NN0 /\ K < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( K - J ) < N ) |
| 136 | 135 | adantr | |- ( ( ( ( K e. NN0 /\ K < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) /\ J < K ) -> ( K - J ) < N ) |
| 137 | 112 114 136 | 3jca | |- ( ( ( ( K e. NN0 /\ K < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) /\ J < K ) -> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) |
| 138 | 137 | exp31 | |- ( ( K e. NN0 /\ K < N ) -> ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J < K -> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) ) ) |
| 139 | 138 | 3adant2 | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J < K -> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) ) ) |
| 140 | 9 139 | sylbi | |- ( K e. ( 0 ..^ N ) -> ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J < K -> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) ) ) |
| 141 | 1 140 | syl | |- ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J < K -> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) ) ) |
| 142 | 141 | com12 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( J < K -> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) ) ) |
| 143 | 10 142 | sylbi | |- ( J e. ( 0 ..^ N ) -> ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( J < K -> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) ) ) |
| 144 | 143 | imp | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( J < K -> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) ) |
| 145 | 106 144 | sylbid | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( -. K <_ J -> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) ) |
| 146 | 145 | impcom | |- ( ( -. K <_ J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) |
| 147 | elfzo1 | |- ( ( K - J ) e. ( 1 ..^ N ) <-> ( ( K - J ) e. NN /\ N e. NN /\ ( K - J ) < N ) ) |
|
| 148 | 146 147 | sylibr | |- ( ( -. K <_ J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> ( K - J ) e. ( 1 ..^ N ) ) |
| 149 | oveq1 | |- ( i = ( K - J ) -> ( i + J ) = ( ( K - J ) + J ) ) |
|
| 150 | 1 64 | syl | |- ( K e. ( ( 0 ..^ N ) \ { J } ) -> K e. CC ) |
| 151 | 5 | zcnd | |- ( J e. ( 0 ..^ N ) -> J e. CC ) |
| 152 | npcan | |- ( ( K e. CC /\ J e. CC ) -> ( ( K - J ) + J ) = K ) |
|
| 153 | 150 151 152 | syl2anr | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( ( K - J ) + J ) = K ) |
| 154 | 153 | adantl | |- ( ( -. K <_ J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> ( ( K - J ) + J ) = K ) |
| 155 | 149 154 | sylan9eqr | |- ( ( ( -. K <_ J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) /\ i = ( K - J ) ) -> ( i + J ) = K ) |
| 156 | 155 | oveq1d | |- ( ( ( -. K <_ J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) /\ i = ( K - J ) ) -> ( ( i + J ) mod N ) = ( K mod N ) ) |
| 157 | 156 | eqeq2d | |- ( ( ( -. K <_ J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) /\ i = ( K - J ) ) -> ( K = ( ( i + J ) mod N ) <-> K = ( K mod N ) ) ) |
| 158 | zmodidfzoimp | |- ( K e. ( 0 ..^ N ) -> ( K mod N ) = K ) |
|
| 159 | 1 158 | syl | |- ( K e. ( ( 0 ..^ N ) \ { J } ) -> ( K mod N ) = K ) |
| 160 | 159 | adantl | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> ( K mod N ) = K ) |
| 161 | 160 | adantl | |- ( ( -. K <_ J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> ( K mod N ) = K ) |
| 162 | 161 | eqcomd | |- ( ( -. K <_ J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> K = ( K mod N ) ) |
| 163 | 148 157 162 | rspcedvd | |- ( ( -. K <_ J /\ ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) ) -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) |
| 164 | 163 | ex | |- ( -. K <_ J -> ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) ) |
| 165 | 103 164 | pm2.61i | |- ( ( J e. ( 0 ..^ N ) /\ K e. ( ( 0 ..^ N ) \ { J } ) ) -> E. i e. ( 1 ..^ N ) K = ( ( i + J ) mod N ) ) |