This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addmodidr | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( A + M ) mod M ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | |- ( A e. NN0 -> A e. CC ) |
|
| 2 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 3 | addcom | |- ( ( A e. CC /\ M e. CC ) -> ( A + M ) = ( M + A ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. NN0 /\ M e. NN ) -> ( A + M ) = ( M + A ) ) |
| 5 | 4 | 3adant3 | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( A + M ) = ( M + A ) ) |
| 6 | 5 | oveq1d | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( A + M ) mod M ) = ( ( M + A ) mod M ) ) |
| 7 | addmodid | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( M + A ) mod M ) = A ) |
|
| 8 | 6 7 | eqtrd | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( A + M ) mod M ) = A ) |