This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modaddmulmod | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( A + ( ( B mod M ) x. C ) ) mod M ) = ( ( A + ( B x. C ) ) mod M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR /\ C e. ZZ ) -> A e. CC ) |
| 3 | 2 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> A e. CC ) |
| 4 | simpl2 | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> B e. RR ) |
|
| 5 | simpr | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> M e. RR+ ) |
|
| 6 | 4 5 | modcld | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( B mod M ) e. RR ) |
| 7 | 6 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( B mod M ) e. CC ) |
| 8 | zcn | |- ( C e. ZZ -> C e. CC ) |
|
| 9 | 8 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR /\ C e. ZZ ) -> C e. CC ) |
| 10 | 9 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> C e. CC ) |
| 11 | 7 10 | mulcld | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( B mod M ) x. C ) e. CC ) |
| 12 | 3 11 | addcomd | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( A + ( ( B mod M ) x. C ) ) = ( ( ( B mod M ) x. C ) + A ) ) |
| 13 | 12 | oveq1d | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( A + ( ( B mod M ) x. C ) ) mod M ) = ( ( ( ( B mod M ) x. C ) + A ) mod M ) ) |
| 14 | zre | |- ( C e. ZZ -> C e. RR ) |
|
| 15 | 14 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR /\ C e. ZZ ) -> C e. RR ) |
| 16 | 15 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> C e. RR ) |
| 17 | 6 16 | remulcld | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( B mod M ) x. C ) e. RR ) |
| 18 | simpl | |- ( ( B e. RR /\ C e. ZZ ) -> B e. RR ) |
|
| 19 | 14 | adantl | |- ( ( B e. RR /\ C e. ZZ ) -> C e. RR ) |
| 20 | 18 19 | remulcld | |- ( ( B e. RR /\ C e. ZZ ) -> ( B x. C ) e. RR ) |
| 21 | 20 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. ZZ ) -> ( B x. C ) e. RR ) |
| 22 | 21 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( B x. C ) e. RR ) |
| 23 | 22 5 | modcld | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( B x. C ) mod M ) e. RR ) |
| 24 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. ZZ ) -> A e. RR ) |
|
| 25 | 24 | anim1i | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( A e. RR /\ M e. RR+ ) ) |
| 26 | simpl3 | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> C e. ZZ ) |
|
| 27 | modmulmod | |- ( ( B e. RR /\ C e. ZZ /\ M e. RR+ ) -> ( ( ( B mod M ) x. C ) mod M ) = ( ( B x. C ) mod M ) ) |
|
| 28 | 4 26 5 27 | syl3anc | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( ( B mod M ) x. C ) mod M ) = ( ( B x. C ) mod M ) ) |
| 29 | remulcl | |- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
|
| 30 | 14 29 | sylan2 | |- ( ( B e. RR /\ C e. ZZ ) -> ( B x. C ) e. RR ) |
| 31 | 30 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. ZZ ) -> ( B x. C ) e. RR ) |
| 32 | modabs2 | |- ( ( ( B x. C ) e. RR /\ M e. RR+ ) -> ( ( ( B x. C ) mod M ) mod M ) = ( ( B x. C ) mod M ) ) |
|
| 33 | 31 32 | sylan | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( ( B x. C ) mod M ) mod M ) = ( ( B x. C ) mod M ) ) |
| 34 | 28 33 | eqtr4d | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( ( B mod M ) x. C ) mod M ) = ( ( ( B x. C ) mod M ) mod M ) ) |
| 35 | modadd1 | |- ( ( ( ( ( B mod M ) x. C ) e. RR /\ ( ( B x. C ) mod M ) e. RR ) /\ ( A e. RR /\ M e. RR+ ) /\ ( ( ( B mod M ) x. C ) mod M ) = ( ( ( B x. C ) mod M ) mod M ) ) -> ( ( ( ( B mod M ) x. C ) + A ) mod M ) = ( ( ( ( B x. C ) mod M ) + A ) mod M ) ) |
|
| 36 | 17 23 25 34 35 | syl211anc | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( ( ( B mod M ) x. C ) + A ) mod M ) = ( ( ( ( B x. C ) mod M ) + A ) mod M ) ) |
| 37 | 31 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( B x. C ) e. RR ) |
| 38 | 24 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> A e. RR ) |
| 39 | modaddmod | |- ( ( ( B x. C ) e. RR /\ A e. RR /\ M e. RR+ ) -> ( ( ( ( B x. C ) mod M ) + A ) mod M ) = ( ( ( B x. C ) + A ) mod M ) ) |
|
| 40 | 37 38 5 39 | syl3anc | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( ( ( B x. C ) mod M ) + A ) mod M ) = ( ( ( B x. C ) + A ) mod M ) ) |
| 41 | recn | |- ( B e. RR -> B e. CC ) |
|
| 42 | mulcl | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) e. CC ) |
|
| 43 | 41 8 42 | syl2an | |- ( ( B e. RR /\ C e. ZZ ) -> ( B x. C ) e. CC ) |
| 44 | 43 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. ZZ ) -> ( B x. C ) e. CC ) |
| 45 | 44 2 | addcomd | |- ( ( A e. RR /\ B e. RR /\ C e. ZZ ) -> ( ( B x. C ) + A ) = ( A + ( B x. C ) ) ) |
| 46 | 45 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( B x. C ) + A ) = ( A + ( B x. C ) ) ) |
| 47 | 46 | oveq1d | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( ( B x. C ) + A ) mod M ) = ( ( A + ( B x. C ) ) mod M ) ) |
| 48 | 40 47 | eqtrd | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( ( ( B x. C ) mod M ) + A ) mod M ) = ( ( A + ( B x. C ) ) mod M ) ) |
| 49 | 13 36 48 | 3eqtrd | |- ( ( ( A e. RR /\ B e. RR /\ C e. ZZ ) /\ M e. RR+ ) -> ( ( A + ( ( B mod M ) x. C ) ) mod M ) = ( ( A + ( B x. C ) ) mod M ) ) |