This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modadd1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval | |- ( ( A e. RR /\ D e. RR+ ) -> ( A mod D ) = ( A - ( D x. ( |_ ` ( A / D ) ) ) ) ) |
|
| 2 | modval | |- ( ( B e. RR /\ D e. RR+ ) -> ( B mod D ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) |
|
| 3 | 1 2 | eqeqan12d | |- ( ( ( A e. RR /\ D e. RR+ ) /\ ( B e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) |
| 4 | 3 | anandirs | |- ( ( ( A e. RR /\ B e. RR ) /\ D e. RR+ ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) |
| 5 | 4 | adantrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) |
| 6 | oveq1 | |- ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) -> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) + C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) + C ) ) |
|
| 7 | 5 6 | biimtrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) + C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) + C ) ) ) |
| 8 | recn | |- ( A e. RR -> A e. CC ) |
|
| 9 | 8 | adantr | |- ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> A e. CC ) |
| 10 | recn | |- ( C e. RR -> C e. CC ) |
|
| 11 | 10 | ad2antrl | |- ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> C e. CC ) |
| 12 | rpcn | |- ( D e. RR+ -> D e. CC ) |
|
| 13 | 12 | adantl | |- ( ( A e. RR /\ D e. RR+ ) -> D e. CC ) |
| 14 | rerpdivcl | |- ( ( A e. RR /\ D e. RR+ ) -> ( A / D ) e. RR ) |
|
| 15 | reflcl | |- ( ( A / D ) e. RR -> ( |_ ` ( A / D ) ) e. RR ) |
|
| 16 | 15 | recnd | |- ( ( A / D ) e. RR -> ( |_ ` ( A / D ) ) e. CC ) |
| 17 | 14 16 | syl | |- ( ( A e. RR /\ D e. RR+ ) -> ( |_ ` ( A / D ) ) e. CC ) |
| 18 | 13 17 | mulcld | |- ( ( A e. RR /\ D e. RR+ ) -> ( D x. ( |_ ` ( A / D ) ) ) e. CC ) |
| 19 | 18 | adantrl | |- ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( D x. ( |_ ` ( A / D ) ) ) e. CC ) |
| 20 | 9 11 19 | addsubd | |- ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) + C ) ) |
| 21 | 20 | adantlr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) + C ) ) |
| 22 | recn | |- ( B e. RR -> B e. CC ) |
|
| 23 | 22 | adantr | |- ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> B e. CC ) |
| 24 | 10 | ad2antrl | |- ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> C e. CC ) |
| 25 | 12 | adantl | |- ( ( B e. RR /\ D e. RR+ ) -> D e. CC ) |
| 26 | rerpdivcl | |- ( ( B e. RR /\ D e. RR+ ) -> ( B / D ) e. RR ) |
|
| 27 | reflcl | |- ( ( B / D ) e. RR -> ( |_ ` ( B / D ) ) e. RR ) |
|
| 28 | 27 | recnd | |- ( ( B / D ) e. RR -> ( |_ ` ( B / D ) ) e. CC ) |
| 29 | 26 28 | syl | |- ( ( B e. RR /\ D e. RR+ ) -> ( |_ ` ( B / D ) ) e. CC ) |
| 30 | 25 29 | mulcld | |- ( ( B e. RR /\ D e. RR+ ) -> ( D x. ( |_ ` ( B / D ) ) ) e. CC ) |
| 31 | 30 | adantrl | |- ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( D x. ( |_ ` ( B / D ) ) ) e. CC ) |
| 32 | 23 24 31 | addsubd | |- ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) + C ) ) |
| 33 | 32 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) + C ) ) |
| 34 | 21 33 | eqeq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) <-> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) + C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) + C ) ) ) |
| 35 | 7 34 | sylibrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) |
| 36 | oveq1 | |- ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) mod D ) = ( ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) mod D ) ) |
|
| 37 | readdcl | |- ( ( A e. RR /\ C e. RR ) -> ( A + C ) e. RR ) |
|
| 38 | 37 | adantrr | |- ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( A + C ) e. RR ) |
| 39 | simprr | |- ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> D e. RR+ ) |
|
| 40 | 14 | flcld | |- ( ( A e. RR /\ D e. RR+ ) -> ( |_ ` ( A / D ) ) e. ZZ ) |
| 41 | 40 | adantrl | |- ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( |_ ` ( A / D ) ) e. ZZ ) |
| 42 | modcyc2 | |- ( ( ( A + C ) e. RR /\ D e. RR+ /\ ( |_ ` ( A / D ) ) e. ZZ ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) mod D ) = ( ( A + C ) mod D ) ) |
|
| 43 | 38 39 41 42 | syl3anc | |- ( ( A e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) mod D ) = ( ( A + C ) mod D ) ) |
| 44 | 43 | adantlr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) mod D ) = ( ( A + C ) mod D ) ) |
| 45 | readdcl | |- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
|
| 46 | 45 | adantrr | |- ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( B + C ) e. RR ) |
| 47 | simprr | |- ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> D e. RR+ ) |
|
| 48 | 26 | flcld | |- ( ( B e. RR /\ D e. RR+ ) -> ( |_ ` ( B / D ) ) e. ZZ ) |
| 49 | 48 | adantrl | |- ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( |_ ` ( B / D ) ) e. ZZ ) |
| 50 | modcyc2 | |- ( ( ( B + C ) e. RR /\ D e. RR+ /\ ( |_ ` ( B / D ) ) e. ZZ ) -> ( ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) mod D ) = ( ( B + C ) mod D ) ) |
|
| 51 | 46 47 49 50 | syl3anc | |- ( ( B e. RR /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) mod D ) = ( ( B + C ) mod D ) ) |
| 52 | 51 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) mod D ) = ( ( B + C ) mod D ) ) |
| 53 | 44 52 | eqeq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) mod D ) = ( ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) mod D ) <-> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) ) |
| 54 | 36 53 | imbitrid | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( ( A + C ) - ( D x. ( |_ ` ( A / D ) ) ) ) = ( ( B + C ) - ( D x. ( |_ ` ( B / D ) ) ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) ) |
| 55 | 35 54 | syld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) ) |
| 56 | 55 | 3impia | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) |