This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute multiplication over a modulo operation. (Contributed by NM, 11-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moddi | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( A x. ( B mod C ) ) = ( ( A x. B ) mod ( A x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> A e. CC ) |
| 3 | recn | |- ( B e. RR -> B e. CC ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> B e. CC ) |
| 5 | rpre | |- ( C e. RR+ -> C e. RR ) |
|
| 6 | 5 | adantl | |- ( ( B e. RR /\ C e. RR+ ) -> C e. RR ) |
| 7 | refldivcl | |- ( ( B e. RR /\ C e. RR+ ) -> ( |_ ` ( B / C ) ) e. RR ) |
|
| 8 | 6 7 | remulcld | |- ( ( B e. RR /\ C e. RR+ ) -> ( C x. ( |_ ` ( B / C ) ) ) e. RR ) |
| 9 | 8 | recnd | |- ( ( B e. RR /\ C e. RR+ ) -> ( C x. ( |_ ` ( B / C ) ) ) e. CC ) |
| 10 | 9 | 3adant1 | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( C x. ( |_ ` ( B / C ) ) ) e. CC ) |
| 11 | 2 4 10 | subdid | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( A x. ( B - ( C x. ( |_ ` ( B / C ) ) ) ) ) = ( ( A x. B ) - ( A x. ( C x. ( |_ ` ( B / C ) ) ) ) ) ) |
| 12 | rpcnne0 | |- ( C e. RR+ -> ( C e. CC /\ C =/= 0 ) ) |
|
| 13 | 12 | 3ad2ant3 | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( C e. CC /\ C =/= 0 ) ) |
| 14 | rpcnne0 | |- ( A e. RR+ -> ( A e. CC /\ A =/= 0 ) ) |
|
| 15 | 14 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( A e. CC /\ A =/= 0 ) ) |
| 16 | divcan5 | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. B ) / ( A x. C ) ) = ( B / C ) ) |
|
| 17 | 4 13 15 16 | syl3anc | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( ( A x. B ) / ( A x. C ) ) = ( B / C ) ) |
| 18 | 17 | fveq2d | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( |_ ` ( ( A x. B ) / ( A x. C ) ) ) = ( |_ ` ( B / C ) ) ) |
| 19 | 18 | oveq2d | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( ( A x. C ) x. ( |_ ` ( ( A x. B ) / ( A x. C ) ) ) ) = ( ( A x. C ) x. ( |_ ` ( B / C ) ) ) ) |
| 20 | rpcn | |- ( C e. RR+ -> C e. CC ) |
|
| 21 | 20 | 3ad2ant3 | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> C e. CC ) |
| 22 | rerpdivcl | |- ( ( B e. RR /\ C e. RR+ ) -> ( B / C ) e. RR ) |
|
| 23 | reflcl | |- ( ( B / C ) e. RR -> ( |_ ` ( B / C ) ) e. RR ) |
|
| 24 | 23 | recnd | |- ( ( B / C ) e. RR -> ( |_ ` ( B / C ) ) e. CC ) |
| 25 | 22 24 | syl | |- ( ( B e. RR /\ C e. RR+ ) -> ( |_ ` ( B / C ) ) e. CC ) |
| 26 | 25 | 3adant1 | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( |_ ` ( B / C ) ) e. CC ) |
| 27 | 2 21 26 | mulassd | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( ( A x. C ) x. ( |_ ` ( B / C ) ) ) = ( A x. ( C x. ( |_ ` ( B / C ) ) ) ) ) |
| 28 | 19 27 | eqtr2d | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( A x. ( C x. ( |_ ` ( B / C ) ) ) ) = ( ( A x. C ) x. ( |_ ` ( ( A x. B ) / ( A x. C ) ) ) ) ) |
| 29 | 28 | oveq2d | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( ( A x. B ) - ( A x. ( C x. ( |_ ` ( B / C ) ) ) ) ) = ( ( A x. B ) - ( ( A x. C ) x. ( |_ ` ( ( A x. B ) / ( A x. C ) ) ) ) ) ) |
| 30 | 11 29 | eqtrd | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( A x. ( B - ( C x. ( |_ ` ( B / C ) ) ) ) ) = ( ( A x. B ) - ( ( A x. C ) x. ( |_ ` ( ( A x. B ) / ( A x. C ) ) ) ) ) ) |
| 31 | modval | |- ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) = ( B - ( C x. ( |_ ` ( B / C ) ) ) ) ) |
|
| 32 | 31 | 3adant1 | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( B mod C ) = ( B - ( C x. ( |_ ` ( B / C ) ) ) ) ) |
| 33 | 32 | oveq2d | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( A x. ( B mod C ) ) = ( A x. ( B - ( C x. ( |_ ` ( B / C ) ) ) ) ) ) |
| 34 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 35 | remulcl | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
|
| 36 | 34 35 | sylan | |- ( ( A e. RR+ /\ B e. RR ) -> ( A x. B ) e. RR ) |
| 37 | 36 | 3adant3 | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( A x. B ) e. RR ) |
| 38 | rpmulcl | |- ( ( A e. RR+ /\ C e. RR+ ) -> ( A x. C ) e. RR+ ) |
|
| 39 | modval | |- ( ( ( A x. B ) e. RR /\ ( A x. C ) e. RR+ ) -> ( ( A x. B ) mod ( A x. C ) ) = ( ( A x. B ) - ( ( A x. C ) x. ( |_ ` ( ( A x. B ) / ( A x. C ) ) ) ) ) ) |
|
| 40 | 37 38 39 | 3imp3i2an | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( ( A x. B ) mod ( A x. C ) ) = ( ( A x. B ) - ( ( A x. C ) x. ( |_ ` ( ( A x. B ) / ( A x. C ) ) ) ) ) ) |
| 41 | 30 33 40 | 3eqtr4d | |- ( ( A e. RR+ /\ B e. RR /\ C e. RR+ ) -> ( A x. ( B mod C ) ) = ( ( A x. B ) mod ( A x. C ) ) ) |