This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modaddmulmod | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 + ( ( 𝐵 mod 𝑀 ) · 𝐶 ) ) mod 𝑀 ) = ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) mod 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 4 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) | |
| 5 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ+ ) | |
| 6 | 4 5 | modcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 mod 𝑀 ) ∈ ℝ ) |
| 7 | 6 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 mod 𝑀 ) ∈ ℂ ) |
| 8 | zcn | ⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ ) | |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℂ ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → 𝐶 ∈ ℂ ) |
| 11 | 7 10 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 mod 𝑀 ) · 𝐶 ) ∈ ℂ ) |
| 12 | 3 11 | addcomd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 + ( ( 𝐵 mod 𝑀 ) · 𝐶 ) ) = ( ( ( 𝐵 mod 𝑀 ) · 𝐶 ) + 𝐴 ) ) |
| 13 | 12 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 + ( ( 𝐵 mod 𝑀 ) · 𝐶 ) ) mod 𝑀 ) = ( ( ( ( 𝐵 mod 𝑀 ) · 𝐶 ) + 𝐴 ) mod 𝑀 ) ) |
| 14 | zre | ⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℝ ) | |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℝ ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
| 17 | 6 16 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 mod 𝑀 ) · 𝐶 ) ∈ ℝ ) |
| 18 | simpl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℝ ) | |
| 19 | 14 | adantl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℝ ) |
| 20 | 18 19 | remulcld | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 21 | 20 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 23 | 22 5 | modcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 · 𝐶 ) mod 𝑀 ) ∈ ℝ ) |
| 24 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℝ ) | |
| 25 | 24 | anim1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
| 26 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → 𝐶 ∈ ℤ ) | |
| 27 | modmulmod | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐵 mod 𝑀 ) · 𝐶 ) mod 𝑀 ) = ( ( 𝐵 · 𝐶 ) mod 𝑀 ) ) | |
| 28 | 4 26 5 27 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐵 mod 𝑀 ) · 𝐶 ) mod 𝑀 ) = ( ( 𝐵 · 𝐶 ) mod 𝑀 ) ) |
| 29 | remulcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) | |
| 30 | 14 29 | sylan2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 31 | 30 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 32 | modabs2 | ⊢ ( ( ( 𝐵 · 𝐶 ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐵 · 𝐶 ) mod 𝑀 ) mod 𝑀 ) = ( ( 𝐵 · 𝐶 ) mod 𝑀 ) ) | |
| 33 | 31 32 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐵 · 𝐶 ) mod 𝑀 ) mod 𝑀 ) = ( ( 𝐵 · 𝐶 ) mod 𝑀 ) ) |
| 34 | 28 33 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐵 mod 𝑀 ) · 𝐶 ) mod 𝑀 ) = ( ( ( 𝐵 · 𝐶 ) mod 𝑀 ) mod 𝑀 ) ) |
| 35 | modadd1 | ⊢ ( ( ( ( ( 𝐵 mod 𝑀 ) · 𝐶 ) ∈ ℝ ∧ ( ( 𝐵 · 𝐶 ) mod 𝑀 ) ∈ ℝ ) ∧ ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( ( ( 𝐵 mod 𝑀 ) · 𝐶 ) mod 𝑀 ) = ( ( ( 𝐵 · 𝐶 ) mod 𝑀 ) mod 𝑀 ) ) → ( ( ( ( 𝐵 mod 𝑀 ) · 𝐶 ) + 𝐴 ) mod 𝑀 ) = ( ( ( ( 𝐵 · 𝐶 ) mod 𝑀 ) + 𝐴 ) mod 𝑀 ) ) | |
| 36 | 17 23 25 34 35 | syl211anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( ( ( 𝐵 mod 𝑀 ) · 𝐶 ) + 𝐴 ) mod 𝑀 ) = ( ( ( ( 𝐵 · 𝐶 ) mod 𝑀 ) + 𝐴 ) mod 𝑀 ) ) |
| 37 | 31 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 38 | 24 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 39 | modaddmod | ⊢ ( ( ( 𝐵 · 𝐶 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( ( 𝐵 · 𝐶 ) mod 𝑀 ) + 𝐴 ) mod 𝑀 ) = ( ( ( 𝐵 · 𝐶 ) + 𝐴 ) mod 𝑀 ) ) | |
| 40 | 37 38 5 39 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( ( ( 𝐵 · 𝐶 ) mod 𝑀 ) + 𝐴 ) mod 𝑀 ) = ( ( ( 𝐵 · 𝐶 ) + 𝐴 ) mod 𝑀 ) ) |
| 41 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 42 | mulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) | |
| 43 | 41 8 42 | syl2an | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 44 | 43 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 45 | 44 2 | addcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐵 · 𝐶 ) + 𝐴 ) = ( 𝐴 + ( 𝐵 · 𝐶 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 · 𝐶 ) + 𝐴 ) = ( 𝐴 + ( 𝐵 · 𝐶 ) ) ) |
| 47 | 46 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐵 · 𝐶 ) + 𝐴 ) mod 𝑀 ) = ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) mod 𝑀 ) ) |
| 48 | 40 47 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( ( ( 𝐵 · 𝐶 ) mod 𝑀 ) + 𝐴 ) mod 𝑀 ) = ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) mod 𝑀 ) ) |
| 49 | 13 36 48 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 + ( ( 𝐵 mod 𝑀 ) · 𝐶 ) ) mod 𝑀 ) = ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) mod 𝑀 ) ) |