This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a real number modulo a positive real number and an integer equals the product of the real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmulmod | |- ( ( A e. RR /\ B e. ZZ /\ M e. RR+ ) -> ( ( ( A mod M ) x. B ) mod M ) = ( ( A x. B ) mod M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcl | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
|
| 2 | simpl | |- ( ( A e. RR /\ M e. RR+ ) -> A e. RR ) |
|
| 3 | 1 2 | jca | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) e. RR /\ A e. RR ) ) |
| 4 | 3 | 3adant2 | |- ( ( A e. RR /\ B e. ZZ /\ M e. RR+ ) -> ( ( A mod M ) e. RR /\ A e. RR ) ) |
| 5 | 3simpc | |- ( ( A e. RR /\ B e. ZZ /\ M e. RR+ ) -> ( B e. ZZ /\ M e. RR+ ) ) |
|
| 6 | modabs2 | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) mod M ) = ( A mod M ) ) |
|
| 7 | 6 | 3adant2 | |- ( ( A e. RR /\ B e. ZZ /\ M e. RR+ ) -> ( ( A mod M ) mod M ) = ( A mod M ) ) |
| 8 | modmul1 | |- ( ( ( ( A mod M ) e. RR /\ A e. RR ) /\ ( B e. ZZ /\ M e. RR+ ) /\ ( ( A mod M ) mod M ) = ( A mod M ) ) -> ( ( ( A mod M ) x. B ) mod M ) = ( ( A x. B ) mod M ) ) |
|
| 9 | 4 5 7 8 | syl3anc | |- ( ( A e. RR /\ B e. ZZ /\ M e. RR+ ) -> ( ( ( A mod M ) x. B ) mod M ) = ( ( A x. B ) mod M ) ) |