This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modaddmodlo | |- ( ( A e. ZZ /\ M e. NN ) -> ( B e. ( 0 ..^ ( M - ( A mod M ) ) ) -> ( B + ( A mod M ) ) = ( ( B + A ) mod M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz | |- ( B e. ( 0 ..^ ( M - ( A mod M ) ) ) -> B e. ZZ ) |
|
| 2 | 1 | zred | |- ( B e. ( 0 ..^ ( M - ( A mod M ) ) ) -> B e. RR ) |
| 3 | 2 | adantr | |- ( ( B e. ( 0 ..^ ( M - ( A mod M ) ) ) /\ ( A e. ZZ /\ M e. NN ) ) -> B e. RR ) |
| 4 | zmodcl | |- ( ( A e. ZZ /\ M e. NN ) -> ( A mod M ) e. NN0 ) |
|
| 5 | 4 | nn0red | |- ( ( A e. ZZ /\ M e. NN ) -> ( A mod M ) e. RR ) |
| 6 | 5 | adantl | |- ( ( B e. ( 0 ..^ ( M - ( A mod M ) ) ) /\ ( A e. ZZ /\ M e. NN ) ) -> ( A mod M ) e. RR ) |
| 7 | 3 6 | readdcld | |- ( ( B e. ( 0 ..^ ( M - ( A mod M ) ) ) /\ ( A e. ZZ /\ M e. NN ) ) -> ( B + ( A mod M ) ) e. RR ) |
| 8 | 7 | ancoms | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> ( B + ( A mod M ) ) e. RR ) |
| 9 | nnrp | |- ( M e. NN -> M e. RR+ ) |
|
| 10 | 9 | ad2antlr | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> M e. RR+ ) |
| 11 | 2 | adantl | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> B e. RR ) |
| 12 | 5 | adantr | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> ( A mod M ) e. RR ) |
| 13 | elfzole1 | |- ( B e. ( 0 ..^ ( M - ( A mod M ) ) ) -> 0 <_ B ) |
|
| 14 | 13 | adantl | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> 0 <_ B ) |
| 15 | 4 | nn0ge0d | |- ( ( A e. ZZ /\ M e. NN ) -> 0 <_ ( A mod M ) ) |
| 16 | 15 | adantr | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> 0 <_ ( A mod M ) ) |
| 17 | 11 12 14 16 | addge0d | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> 0 <_ ( B + ( A mod M ) ) ) |
| 18 | elfzolt2 | |- ( B e. ( 0 ..^ ( M - ( A mod M ) ) ) -> B < ( M - ( A mod M ) ) ) |
|
| 19 | 18 | adantl | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> B < ( M - ( A mod M ) ) ) |
| 20 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 21 | 20 | ad2antlr | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> M e. RR ) |
| 22 | 11 12 21 | ltaddsubd | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> ( ( B + ( A mod M ) ) < M <-> B < ( M - ( A mod M ) ) ) ) |
| 23 | 19 22 | mpbird | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> ( B + ( A mod M ) ) < M ) |
| 24 | modid | |- ( ( ( ( B + ( A mod M ) ) e. RR /\ M e. RR+ ) /\ ( 0 <_ ( B + ( A mod M ) ) /\ ( B + ( A mod M ) ) < M ) ) -> ( ( B + ( A mod M ) ) mod M ) = ( B + ( A mod M ) ) ) |
|
| 25 | 8 10 17 23 24 | syl22anc | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> ( ( B + ( A mod M ) ) mod M ) = ( B + ( A mod M ) ) ) |
| 26 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 27 | 26 | adantr | |- ( ( A e. ZZ /\ M e. NN ) -> A e. RR ) |
| 28 | 27 | adantr | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> A e. RR ) |
| 29 | modadd2mod | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( B + ( A mod M ) ) mod M ) = ( ( B + A ) mod M ) ) |
|
| 30 | 28 11 10 29 | syl3anc | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> ( ( B + ( A mod M ) ) mod M ) = ( ( B + A ) mod M ) ) |
| 31 | 25 30 | eqtr3d | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( 0 ..^ ( M - ( A mod M ) ) ) ) -> ( B + ( A mod M ) ) = ( ( B + A ) mod M ) ) |
| 32 | 31 | ex | |- ( ( A e. ZZ /\ M e. NN ) -> ( B e. ( 0 ..^ ( M - ( A mod M ) ) ) -> ( B + ( A mod M ) ) = ( ( B + A ) mod M ) ) ) |