This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modadd2mod | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( B + ( A mod M ) ) mod M ) = ( ( B + A ) mod M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( B e. RR -> B e. CC ) |
|
| 2 | 1 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> B e. CC ) |
| 3 | modcl | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
|
| 4 | 3 | recnd | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. CC ) |
| 5 | 4 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( A mod M ) e. CC ) |
| 6 | 2 5 | addcomd | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( B + ( A mod M ) ) = ( ( A mod M ) + B ) ) |
| 7 | 6 | oveq1d | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( B + ( A mod M ) ) mod M ) = ( ( ( A mod M ) + B ) mod M ) ) |
| 8 | modaddmod | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + B ) mod M ) = ( ( A + B ) mod M ) ) |
|
| 9 | recn | |- ( A e. RR -> A e. CC ) |
|
| 10 | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
|
| 11 | 9 1 10 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) |
| 12 | 11 | oveq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) mod M ) = ( ( B + A ) mod M ) ) |
| 13 | 12 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( A + B ) mod M ) = ( ( B + A ) mod M ) ) |
| 14 | 7 8 13 | 3eqtrd | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( B + ( A mod M ) ) mod M ) = ( ( B + A ) mod M ) ) |