This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018) (Revised by AV, 5-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulmod0 | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( ( A x. M ) mod M ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 2 | 1 | adantr | |- ( ( A e. ZZ /\ M e. RR+ ) -> A e. CC ) |
| 3 | rpcn | |- ( M e. RR+ -> M e. CC ) |
|
| 4 | 3 | adantl | |- ( ( A e. ZZ /\ M e. RR+ ) -> M e. CC ) |
| 5 | rpne0 | |- ( M e. RR+ -> M =/= 0 ) |
|
| 6 | 5 | adantl | |- ( ( A e. ZZ /\ M e. RR+ ) -> M =/= 0 ) |
| 7 | 2 4 6 | divcan4d | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( ( A x. M ) / M ) = A ) |
| 8 | simpl | |- ( ( A e. ZZ /\ M e. RR+ ) -> A e. ZZ ) |
|
| 9 | 7 8 | eqeltrd | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( ( A x. M ) / M ) e. ZZ ) |
| 10 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 11 | rpre | |- ( M e. RR+ -> M e. RR ) |
|
| 12 | remulcl | |- ( ( A e. RR /\ M e. RR ) -> ( A x. M ) e. RR ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( A x. M ) e. RR ) |
| 14 | mod0 | |- ( ( ( A x. M ) e. RR /\ M e. RR+ ) -> ( ( ( A x. M ) mod M ) = 0 <-> ( ( A x. M ) / M ) e. ZZ ) ) |
|
| 15 | 13 14 | sylancom | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( ( ( A x. M ) mod M ) = 0 <-> ( ( A x. M ) / M ) e. ZZ ) ) |
| 16 | 9 15 | mpbird | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( ( A x. M ) mod M ) = 0 ) |