This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psmetsym | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmetcl | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
|
| 2 | psmetcl | |- ( ( D e. ( PsMet ` X ) /\ B e. X /\ A e. X ) -> ( B D A ) e. RR* ) |
|
| 3 | 2 | 3com23 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( B D A ) e. RR* ) |
| 4 | simp1 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> D e. ( PsMet ` X ) ) |
|
| 5 | simp3 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 6 | simp2 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 7 | psmettri2 | |- ( ( D e. ( PsMet ` X ) /\ ( B e. X /\ A e. X /\ B e. X ) ) -> ( A D B ) <_ ( ( B D A ) +e ( B D B ) ) ) |
|
| 8 | 4 5 6 5 7 | syl13anc | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) <_ ( ( B D A ) +e ( B D B ) ) ) |
| 9 | psmet0 | |- ( ( D e. ( PsMet ` X ) /\ B e. X ) -> ( B D B ) = 0 ) |
|
| 10 | 9 | 3adant2 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( B D B ) = 0 ) |
| 11 | 10 | oveq2d | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( ( B D A ) +e ( B D B ) ) = ( ( B D A ) +e 0 ) ) |
| 12 | 2 | xaddridd | |- ( ( D e. ( PsMet ` X ) /\ B e. X /\ A e. X ) -> ( ( B D A ) +e 0 ) = ( B D A ) ) |
| 13 | 12 | 3com23 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( ( B D A ) +e 0 ) = ( B D A ) ) |
| 14 | 11 13 | eqtrd | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( ( B D A ) +e ( B D B ) ) = ( B D A ) ) |
| 15 | 8 14 | breqtrd | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) <_ ( B D A ) ) |
| 16 | psmettri2 | |- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ A e. X ) ) -> ( B D A ) <_ ( ( A D B ) +e ( A D A ) ) ) |
|
| 17 | 4 6 5 6 16 | syl13anc | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( B D A ) <_ ( ( A D B ) +e ( A D A ) ) ) |
| 18 | psmet0 | |- ( ( D e. ( PsMet ` X ) /\ A e. X ) -> ( A D A ) = 0 ) |
|
| 19 | 18 | 3adant3 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( A D A ) = 0 ) |
| 20 | 19 | oveq2d | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) +e ( A D A ) ) = ( ( A D B ) +e 0 ) ) |
| 21 | 1 | xaddridd | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) +e 0 ) = ( A D B ) ) |
| 22 | 20 21 | eqtrd | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) +e ( A D A ) ) = ( A D B ) ) |
| 23 | 17 22 | breqtrd | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( B D A ) <_ ( A D B ) ) |
| 24 | 1 3 15 23 | xrletrid | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) |