This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of the elements of the filter base generated by the metric D . (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | |- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| Assertion | metustss | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A C_ ( X X. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | |- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| 2 | cnvimass | |- ( `' D " ( 0 [,) a ) ) C_ dom D |
|
| 3 | psmetf | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 4 | 2 3 | fssdm | |- ( D e. ( PsMet ` X ) -> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) |
| 5 | 4 | ad2antrr | |- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ a e. RR+ ) -> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) |
| 6 | cnvexg | |- ( D e. ( PsMet ` X ) -> `' D e. _V ) |
|
| 7 | imaexg | |- ( `' D e. _V -> ( `' D " ( 0 [,) a ) ) e. _V ) |
|
| 8 | elpwg | |- ( ( `' D " ( 0 [,) a ) ) e. _V -> ( ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) <-> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) ) |
|
| 9 | 6 7 8 | 3syl | |- ( D e. ( PsMet ` X ) -> ( ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) <-> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) ) |
| 10 | 9 | ad2antrr | |- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ a e. RR+ ) -> ( ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) <-> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) ) |
| 11 | 5 10 | mpbird | |- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ a e. RR+ ) -> ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) ) |
| 12 | 11 | ralrimiva | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A. a e. RR+ ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) ) |
| 13 | eqid | |- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| 14 | 13 | rnmptss | |- ( A. a e. RR+ ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) -> ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) C_ ~P ( X X. X ) ) |
| 15 | 12 14 | syl | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) C_ ~P ( X X. X ) ) |
| 16 | 1 15 | eqsstrid | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> F C_ ~P ( X X. X ) ) |
| 17 | simpr | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A e. F ) |
|
| 18 | 16 17 | sseldd | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A e. ~P ( X X. X ) ) |
| 19 | 18 | elpwid | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A C_ ( X X. X ) ) |