This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqbrrdva.1 | |- ( ph -> A C_ ( C X. D ) ) |
|
| eqbrrdva.2 | |- ( ph -> B C_ ( C X. D ) ) |
||
| eqbrrdva.3 | |- ( ( ph /\ x e. C /\ y e. D ) -> ( x A y <-> x B y ) ) |
||
| Assertion | eqbrrdva | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdva.1 | |- ( ph -> A C_ ( C X. D ) ) |
|
| 2 | eqbrrdva.2 | |- ( ph -> B C_ ( C X. D ) ) |
|
| 3 | eqbrrdva.3 | |- ( ( ph /\ x e. C /\ y e. D ) -> ( x A y <-> x B y ) ) |
|
| 4 | xpss | |- ( C X. D ) C_ ( _V X. _V ) |
|
| 5 | 1 4 | sstrdi | |- ( ph -> A C_ ( _V X. _V ) ) |
| 6 | df-rel | |- ( Rel A <-> A C_ ( _V X. _V ) ) |
|
| 7 | 5 6 | sylibr | |- ( ph -> Rel A ) |
| 8 | 2 4 | sstrdi | |- ( ph -> B C_ ( _V X. _V ) ) |
| 9 | df-rel | |- ( Rel B <-> B C_ ( _V X. _V ) ) |
|
| 10 | 8 9 | sylibr | |- ( ph -> Rel B ) |
| 11 | 1 | ssbrd | |- ( ph -> ( x A y -> x ( C X. D ) y ) ) |
| 12 | brxp | |- ( x ( C X. D ) y <-> ( x e. C /\ y e. D ) ) |
|
| 13 | 11 12 | imbitrdi | |- ( ph -> ( x A y -> ( x e. C /\ y e. D ) ) ) |
| 14 | 2 | ssbrd | |- ( ph -> ( x B y -> x ( C X. D ) y ) ) |
| 15 | 14 12 | imbitrdi | |- ( ph -> ( x B y -> ( x e. C /\ y e. D ) ) ) |
| 16 | 3 | 3expib | |- ( ph -> ( ( x e. C /\ y e. D ) -> ( x A y <-> x B y ) ) ) |
| 17 | 13 15 16 | pm5.21ndd | |- ( ph -> ( x A y <-> x B y ) ) |
| 18 | 7 10 17 | eqbrrdv | |- ( ph -> A = B ) |