This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossxp | |- ( A o. B ) C_ ( dom B X. ran A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | |- Rel ( A o. B ) |
|
| 2 | relssdmrn | |- ( Rel ( A o. B ) -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) |
| 4 | dmcoss | |- dom ( A o. B ) C_ dom B |
|
| 5 | rncoss | |- ran ( A o. B ) C_ ran A |
|
| 6 | xpss12 | |- ( ( dom ( A o. B ) C_ dom B /\ ran ( A o. B ) C_ ran A ) -> ( dom ( A o. B ) X. ran ( A o. B ) ) C_ ( dom B X. ran A ) ) |
|
| 7 | 4 5 6 | mp2an | |- ( dom ( A o. B ) X. ran ( A o. B ) ) C_ ( dom B X. ran A ) |
| 8 | 3 7 | sstri | |- ( A o. B ) C_ ( dom B X. ran A ) |