This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psmettri | |- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( A D C ) +e ( C D B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> D e. ( PsMet ` X ) ) |
|
| 2 | simpr3 | |- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
|
| 3 | simpr1 | |- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 4 | simpr2 | |- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 5 | psmettri2 | |- ( ( D e. ( PsMet ` X ) /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( A D B ) <_ ( ( C D A ) +e ( C D B ) ) ) |
|
| 6 | 1 2 3 4 5 | syl13anc | |- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( C D A ) +e ( C D B ) ) ) |
| 7 | psmetsym | |- ( ( D e. ( PsMet ` X ) /\ C e. X /\ A e. X ) -> ( C D A ) = ( A D C ) ) |
|
| 8 | 1 2 3 7 | syl3anc | |- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( C D A ) = ( A D C ) ) |
| 9 | 8 | oveq1d | |- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C D A ) +e ( C D B ) ) = ( ( A D C ) +e ( C D B ) ) ) |
| 10 | 6 9 | breqtrd | |- ( ( D e. ( PsMet ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( A D C ) +e ( C D B ) ) ) |