This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfneg.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| mbfneg.2 | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
||
| Assertion | mbfneg | |- ( ph -> ( x e. A |-> -u B ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfneg.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | mbfneg.2 | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
|
| 3 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 4 | 3 1 | dmmptd | |- ( ph -> dom ( x e. A |-> B ) = A ) |
| 5 | 2 | dmexd | |- ( ph -> dom ( x e. A |-> B ) e. _V ) |
| 6 | 4 5 | eqeltrrd | |- ( ph -> A e. _V ) |
| 7 | neg1rr | |- -u 1 e. RR |
|
| 8 | 7 | a1i | |- ( ( ph /\ x e. A ) -> -u 1 e. RR ) |
| 9 | fconstmpt | |- ( A X. { -u 1 } ) = ( x e. A |-> -u 1 ) |
|
| 10 | 9 | a1i | |- ( ph -> ( A X. { -u 1 } ) = ( x e. A |-> -u 1 ) ) |
| 11 | eqidd | |- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
|
| 12 | 6 8 1 10 11 | offval2 | |- ( ph -> ( ( A X. { -u 1 } ) oF x. ( x e. A |-> B ) ) = ( x e. A |-> ( -u 1 x. B ) ) ) |
| 13 | 2 1 | mbfmptcl | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 14 | 13 | mulm1d | |- ( ( ph /\ x e. A ) -> ( -u 1 x. B ) = -u B ) |
| 15 | 14 | mpteq2dva | |- ( ph -> ( x e. A |-> ( -u 1 x. B ) ) = ( x e. A |-> -u B ) ) |
| 16 | 12 15 | eqtrd | |- ( ph -> ( ( A X. { -u 1 } ) oF x. ( x e. A |-> B ) ) = ( x e. A |-> -u B ) ) |
| 17 | 7 | a1i | |- ( ph -> -u 1 e. RR ) |
| 18 | 13 | fmpttd | |- ( ph -> ( x e. A |-> B ) : A --> CC ) |
| 19 | 2 17 18 | mbfmulc2re | |- ( ph -> ( ( A X. { -u 1 } ) oF x. ( x e. A |-> B ) ) e. MblFn ) |
| 20 | 16 19 | eqeltrrd | |- ( ph -> ( x e. A |-> -u B ) e. MblFn ) |