This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image under the identity relation. Theorem 3.16(viii) of Monk1 p. 38. (Contributed by NM, 30-Apr-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imai | |- ( _I " A ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima3 | |- ( _I " A ) = { y | E. x ( x e. A /\ <. x , y >. e. _I ) } |
|
| 2 | df-br | |- ( x _I y <-> <. x , y >. e. _I ) |
|
| 3 | vex | |- y e. _V |
|
| 4 | 3 | ideq | |- ( x _I y <-> x = y ) |
| 5 | 2 4 | bitr3i | |- ( <. x , y >. e. _I <-> x = y ) |
| 6 | 5 | anbi1ci | |- ( ( x e. A /\ <. x , y >. e. _I ) <-> ( x = y /\ x e. A ) ) |
| 7 | 6 | exbii | |- ( E. x ( x e. A /\ <. x , y >. e. _I ) <-> E. x ( x = y /\ x e. A ) ) |
| 8 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 9 | 8 | equsexvw | |- ( E. x ( x = y /\ x e. A ) <-> y e. A ) |
| 10 | 7 9 | bitri | |- ( E. x ( x e. A /\ <. x , y >. e. _I ) <-> y e. A ) |
| 11 | 10 | abbii | |- { y | E. x ( x e. A /\ <. x , y >. e. _I ) } = { y | y e. A } |
| 12 | abid2 | |- { y | y e. A } = A |
|
| 13 | 1 11 12 | 3eqtri | |- ( _I " A ) = A |