This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgeq2 | |- ( A = B -> rec ( F , A ) = rec ( F , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1 | |- ( A = B -> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) = if ( g = (/) , B , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) |
|
| 2 | 1 | mpteq2dv | |- ( A = B -> ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) = ( g e. _V |-> if ( g = (/) , B , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
| 3 | recseq | |- ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) = ( g e. _V |-> if ( g = (/) , B , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) -> recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) = recs ( ( g e. _V |-> if ( g = (/) , B , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) ) |
|
| 4 | 2 3 | syl | |- ( A = B -> recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) = recs ( ( g e. _V |-> if ( g = (/) , B , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) ) |
| 5 | df-rdg | |- rec ( F , A ) = recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
|
| 6 | df-rdg | |- rec ( F , B ) = recs ( ( g e. _V |-> if ( g = (/) , B , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
|
| 7 | 4 5 6 | 3eqtr4g | |- ( A = B -> rec ( F , A ) = rec ( F , B ) ) |