This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of nqereu : if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enqeq | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> ( A e. Q. /\ B e. Q. ) ) |
|
| 2 | elpqn | |- ( B e. Q. -> B e. ( N. X. N. ) ) |
|
| 3 | 2 | 3ad2ant2 | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> B e. ( N. X. N. ) ) |
| 4 | nqereu | |- ( B e. ( N. X. N. ) -> E! x e. Q. x ~Q B ) |
|
| 5 | reurmo | |- ( E! x e. Q. x ~Q B -> E* x e. Q. x ~Q B ) |
|
| 6 | 3 4 5 | 3syl | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> E* x e. Q. x ~Q B ) |
| 7 | df-rmo | |- ( E* x e. Q. x ~Q B <-> E* x ( x e. Q. /\ x ~Q B ) ) |
|
| 8 | 6 7 | sylib | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> E* x ( x e. Q. /\ x ~Q B ) ) |
| 9 | 3simpb | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> ( A e. Q. /\ A ~Q B ) ) |
|
| 10 | simp2 | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> B e. Q. ) |
|
| 11 | enqer | |- ~Q Er ( N. X. N. ) |
|
| 12 | 11 | a1i | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> ~Q Er ( N. X. N. ) ) |
| 13 | 12 3 | erref | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> B ~Q B ) |
| 14 | 10 13 | jca | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> ( B e. Q. /\ B ~Q B ) ) |
| 15 | eleq1 | |- ( x = A -> ( x e. Q. <-> A e. Q. ) ) |
|
| 16 | breq1 | |- ( x = A -> ( x ~Q B <-> A ~Q B ) ) |
|
| 17 | 15 16 | anbi12d | |- ( x = A -> ( ( x e. Q. /\ x ~Q B ) <-> ( A e. Q. /\ A ~Q B ) ) ) |
| 18 | eleq1 | |- ( x = B -> ( x e. Q. <-> B e. Q. ) ) |
|
| 19 | breq1 | |- ( x = B -> ( x ~Q B <-> B ~Q B ) ) |
|
| 20 | 18 19 | anbi12d | |- ( x = B -> ( ( x e. Q. /\ x ~Q B ) <-> ( B e. Q. /\ B ~Q B ) ) ) |
| 21 | 17 20 | moi | |- ( ( ( A e. Q. /\ B e. Q. ) /\ E* x ( x e. Q. /\ x ~Q B ) /\ ( ( A e. Q. /\ A ~Q B ) /\ ( B e. Q. /\ B ~Q B ) ) ) -> A = B ) |
| 22 | 1 8 9 14 21 | syl112anc | |- ( ( A e. Q. /\ B e. Q. /\ A ~Q B ) -> A = B ) |