This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compatibility of ordering on equivalent fractions. (Contributed by Mario Carneiro, 9-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lterpq | |- ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltpq | |- |
|
| 2 | opabssxp | |- { <. x , y >. | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) |
|
| 3 | 1 2 | eqsstri | |- |
| 4 | 3 | brel | |- ( A |
| 5 | ltrelnq | |- |
|
| 6 | 5 | brel | |- ( ( /Q ` A )( ( /Q ` A ) e. Q. /\ ( /Q ` B ) e. Q. ) ) |
| 7 | elpqn | |- ( ( /Q ` A ) e. Q. -> ( /Q ` A ) e. ( N. X. N. ) ) |
|
| 8 | elpqn | |- ( ( /Q ` B ) e. Q. -> ( /Q ` B ) e. ( N. X. N. ) ) |
|
| 9 | nqerf | |- /Q : ( N. X. N. ) --> Q. |
|
| 10 | 9 | fdmi | |- dom /Q = ( N. X. N. ) |
| 11 | 0nelxp | |- -. (/) e. ( N. X. N. ) |
|
| 12 | 10 11 | ndmfvrcl | |- ( ( /Q ` A ) e. ( N. X. N. ) -> A e. ( N. X. N. ) ) |
| 13 | 10 11 | ndmfvrcl | |- ( ( /Q ` B ) e. ( N. X. N. ) -> B e. ( N. X. N. ) ) |
| 14 | 12 13 | anim12i | |- ( ( ( /Q ` A ) e. ( N. X. N. ) /\ ( /Q ` B ) e. ( N. X. N. ) ) -> ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) ) |
| 15 | 7 8 14 | syl2an | |- ( ( ( /Q ` A ) e. Q. /\ ( /Q ` B ) e. Q. ) -> ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) ) |
| 16 | 6 15 | syl | |- ( ( /Q ` A )( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) ) |
| 17 | xp1st | |- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
|
| 18 | xp2nd | |- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
|
| 19 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
|
| 20 | 17 18 19 | syl2an | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 21 | ltmpi | |- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. -> ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) |
|
| 22 | 20 21 | syl | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) |
| 23 | nqercl | |- ( A e. ( N. X. N. ) -> ( /Q ` A ) e. Q. ) |
|
| 24 | nqercl | |- ( B e. ( N. X. N. ) -> ( /Q ` B ) e. Q. ) |
|
| 25 | ordpinq | |- ( ( ( /Q ` A ) e. Q. /\ ( /Q ` B ) e. Q. ) -> ( ( /Q ` A )( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) |
|
| 26 | 23 24 25 | syl2an | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( /Q ` A )( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) |
| 27 | 1st2nd2 | |- ( A e. ( N. X. N. ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
|
| 28 | 1st2nd2 | |- ( B e. ( N. X. N. ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
|
| 29 | 27 28 | breqan12d | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A |
| 30 | ordpipq | |- ( <. ( 1st ` A ) , ( 2nd ` A ) >. |
|
| 31 | 29 30 | bitrdi | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A |
| 32 | xp1st | |- ( ( /Q ` A ) e. ( N. X. N. ) -> ( 1st ` ( /Q ` A ) ) e. N. ) |
|
| 33 | 23 7 32 | 3syl | |- ( A e. ( N. X. N. ) -> ( 1st ` ( /Q ` A ) ) e. N. ) |
| 34 | xp2nd | |- ( ( /Q ` B ) e. ( N. X. N. ) -> ( 2nd ` ( /Q ` B ) ) e. N. ) |
|
| 35 | 24 8 34 | 3syl | |- ( B e. ( N. X. N. ) -> ( 2nd ` ( /Q ` B ) ) e. N. ) |
| 36 | mulclpi | |- ( ( ( 1st ` ( /Q ` A ) ) e. N. /\ ( 2nd ` ( /Q ` B ) ) e. N. ) -> ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) e. N. ) |
|
| 37 | 33 35 36 | syl2an | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) e. N. ) |
| 38 | ltmpi | |- ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) e. N. -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
|
| 39 | 37 38 | syl | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 40 | mulcompi | |- ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) ) |
|
| 41 | 40 | a1i | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) ) ) |
| 42 | nqerrel | |- ( A e. ( N. X. N. ) -> A ~Q ( /Q ` A ) ) |
|
| 43 | 23 7 | syl | |- ( A e. ( N. X. N. ) -> ( /Q ` A ) e. ( N. X. N. ) ) |
| 44 | enqbreq2 | |- ( ( A e. ( N. X. N. ) /\ ( /Q ` A ) e. ( N. X. N. ) ) -> ( A ~Q ( /Q ` A ) <-> ( ( 1st ` A ) .N ( 2nd ` ( /Q ` A ) ) ) = ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` A ) ) ) ) |
|
| 45 | 43 44 | mpdan | |- ( A e. ( N. X. N. ) -> ( A ~Q ( /Q ` A ) <-> ( ( 1st ` A ) .N ( 2nd ` ( /Q ` A ) ) ) = ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` A ) ) ) ) |
| 46 | 42 45 | mpbid | |- ( A e. ( N. X. N. ) -> ( ( 1st ` A ) .N ( 2nd ` ( /Q ` A ) ) ) = ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` A ) ) ) |
| 47 | 46 | eqcomd | |- ( A e. ( N. X. N. ) -> ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` A ) ) = ( ( 1st ` A ) .N ( 2nd ` ( /Q ` A ) ) ) ) |
| 48 | nqerrel | |- ( B e. ( N. X. N. ) -> B ~Q ( /Q ` B ) ) |
|
| 49 | 24 8 | syl | |- ( B e. ( N. X. N. ) -> ( /Q ` B ) e. ( N. X. N. ) ) |
| 50 | enqbreq2 | |- ( ( B e. ( N. X. N. ) /\ ( /Q ` B ) e. ( N. X. N. ) ) -> ( B ~Q ( /Q ` B ) <-> ( ( 1st ` B ) .N ( 2nd ` ( /Q ` B ) ) ) = ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` B ) ) ) ) |
|
| 51 | 49 50 | mpdan | |- ( B e. ( N. X. N. ) -> ( B ~Q ( /Q ` B ) <-> ( ( 1st ` B ) .N ( 2nd ` ( /Q ` B ) ) ) = ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` B ) ) ) ) |
| 52 | 48 51 | mpbid | |- ( B e. ( N. X. N. ) -> ( ( 1st ` B ) .N ( 2nd ` ( /Q ` B ) ) ) = ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` B ) ) ) |
| 53 | 47 52 | oveqan12d | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` ( /Q ` B ) ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` ( /Q ` A ) ) ) .N ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` B ) ) ) ) |
| 54 | mulcompi | |- ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) ) |
|
| 55 | fvex | |- ( 1st ` B ) e. _V |
|
| 56 | fvex | |- ( 2nd ` A ) e. _V |
|
| 57 | fvex | |- ( 1st ` ( /Q ` A ) ) e. _V |
|
| 58 | mulcompi | |- ( x .N y ) = ( y .N x ) |
|
| 59 | mulasspi | |- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
|
| 60 | fvex | |- ( 2nd ` ( /Q ` B ) ) e. _V |
|
| 61 | 55 56 57 58 59 60 | caov411 | |- ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) ) = ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` ( /Q ` B ) ) ) ) |
| 62 | 54 61 | eqtri | |- ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` ( /Q ` B ) ) ) ) |
| 63 | mulcompi | |- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` ( /Q ` A ) ) ) ) = ( ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` ( /Q ` A ) ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) |
|
| 64 | fvex | |- ( 1st ` ( /Q ` B ) ) e. _V |
|
| 65 | fvex | |- ( 2nd ` ( /Q ` A ) ) e. _V |
|
| 66 | fvex | |- ( 1st ` A ) e. _V |
|
| 67 | fvex | |- ( 2nd ` B ) e. _V |
|
| 68 | 64 65 66 58 59 67 | caov411 | |- ( ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` ( /Q ` A ) ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` ( /Q ` A ) ) ) .N ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` B ) ) ) |
| 69 | 63 68 | eqtri | |- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` ( /Q ` A ) ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` ( /Q ` A ) ) ) .N ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` B ) ) ) |
| 70 | 53 62 69 | 3eqtr4g | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` ( /Q ` B ) ) .N ( 2nd ` ( /Q ` A ) ) ) ) ) |
| 71 | 41 70 | breq12d | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( ( ( 1st ` ( /Q ` A ) ) .N ( 2nd ` ( /Q ` B ) ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) |
| 72 | 31 39 71 | 3bitrd | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A |
| 73 | 22 26 72 | 3bitr4rd | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A |
| 74 | 4 16 73 | pm5.21nii | |- ( A |