This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enqbreq2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd2 | |- ( A e. ( N. X. N. ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
|
| 2 | 1st2nd2 | |- ( B e. ( N. X. N. ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
|
| 3 | 1 2 | breqan12d | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> <. ( 1st ` A ) , ( 2nd ` A ) >. ~Q <. ( 1st ` B ) , ( 2nd ` B ) >. ) ) |
| 4 | xp1st | |- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
|
| 5 | xp2nd | |- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
|
| 6 | 4 5 | jca | |- ( A e. ( N. X. N. ) -> ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) ) |
| 7 | xp1st | |- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
|
| 8 | xp2nd | |- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
|
| 9 | 7 8 | jca | |- ( B e. ( N. X. N. ) -> ( ( 1st ` B ) e. N. /\ ( 2nd ` B ) e. N. ) ) |
| 10 | enqbreq | |- ( ( ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) /\ ( ( 1st ` B ) e. N. /\ ( 2nd ` B ) e. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. ~Q <. ( 1st ` B ) , ( 2nd ` B ) >. <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 2nd ` A ) .N ( 1st ` B ) ) ) ) |
|
| 11 | 6 9 10 | syl2an | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. ~Q <. ( 1st ` B ) , ( 2nd ` B ) >. <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 2nd ` A ) .N ( 1st ` B ) ) ) ) |
| 12 | mulcompi | |- ( ( 2nd ` A ) .N ( 1st ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) |
|
| 13 | 12 | eqeq2i | |- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 2nd ` A ) .N ( 1st ` B ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) |
| 14 | 13 | a1i | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 2nd ` A ) .N ( 1st ` B ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 15 | 3 11 14 | 3bitrd | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |