This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of Gleason p. 120. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltanq | |- ( C e. Q. -> ( A( C +Q A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addnqf | |- +Q : ( Q. X. Q. ) --> Q. |
|
| 2 | 1 | fdmi | |- dom +Q = ( Q. X. Q. ) |
| 3 | ltrelnq | |- |
|
| 4 | 0nnq | |- -. (/) e. Q. |
|
| 5 | ordpinq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A( ( 1st ` A ) .N ( 2nd ` B ) ) |
|
| 6 | 5 | 3adant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 7 | elpqn | |- ( C e. Q. -> C e. ( N. X. N. ) ) |
|
| 8 | 7 | 3ad2ant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C e. ( N. X. N. ) ) |
| 9 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A e. ( N. X. N. ) ) |
| 11 | addpipq2 | |- ( ( C e. ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> ( C +pQ A ) = <. ( ( ( 1st ` C ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C +pQ A ) = <. ( ( ( 1st ` C ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. ) |
| 13 | elpqn | |- ( B e. Q. -> B e. ( N. X. N. ) ) |
|
| 14 | 13 | 3ad2ant2 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> B e. ( N. X. N. ) ) |
| 15 | addpipq2 | |- ( ( C e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( C +pQ B ) = <. ( ( ( 1st ` C ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) , ( ( 2nd ` C ) .N ( 2nd ` B ) ) >. ) |
|
| 16 | 8 14 15 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C +pQ B ) = <. ( ( ( 1st ` C ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) , ( ( 2nd ` C ) .N ( 2nd ` B ) ) >. ) |
| 17 | 12 16 | breq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( C +pQ A ) |
| 18 | addpqnq | |- ( ( C e. Q. /\ A e. Q. ) -> ( C +Q A ) = ( /Q ` ( C +pQ A ) ) ) |
|
| 19 | 18 | ancoms | |- ( ( A e. Q. /\ C e. Q. ) -> ( C +Q A ) = ( /Q ` ( C +pQ A ) ) ) |
| 20 | 19 | 3adant2 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C +Q A ) = ( /Q ` ( C +pQ A ) ) ) |
| 21 | addpqnq | |- ( ( C e. Q. /\ B e. Q. ) -> ( C +Q B ) = ( /Q ` ( C +pQ B ) ) ) |
|
| 22 | 21 | ancoms | |- ( ( B e. Q. /\ C e. Q. ) -> ( C +Q B ) = ( /Q ` ( C +pQ B ) ) ) |
| 23 | 22 | 3adant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C +Q B ) = ( /Q ` ( C +pQ B ) ) ) |
| 24 | 20 23 | breq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( C +Q A )( /Q ` ( C +pQ A ) ) |
| 25 | lterpq | |- ( ( C +pQ A ) |
|
| 26 | 24 25 | bitr4di | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( C +Q A )( C +pQ A ) |
| 27 | xp2nd | |- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
|
| 28 | 8 27 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` C ) e. N. ) |
| 29 | mulclpi | |- ( ( ( 2nd ` C ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. ) |
|
| 30 | 28 28 29 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. ) |
| 31 | ltmpi | |- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
|
| 32 | 30 31 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 33 | xp2nd | |- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
|
| 34 | 14 33 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` B ) e. N. ) |
| 35 | mulclpi | |- ( ( ( 2nd ` C ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 2nd ` C ) .N ( 2nd ` B ) ) e. N. ) |
|
| 36 | 28 34 35 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` C ) .N ( 2nd ` B ) ) e. N. ) |
| 37 | xp1st | |- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
|
| 38 | 8 37 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` C ) e. N. ) |
| 39 | xp2nd | |- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
|
| 40 | 10 39 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` A ) e. N. ) |
| 41 | mulclpi | |- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` A ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) |
|
| 42 | 38 40 41 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) |
| 43 | mulclpi | |- ( ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) -> ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. ) |
|
| 44 | 36 42 43 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. ) |
| 45 | ltapi | |- ( ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) |
|
| 46 | 44 45 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) |
| 47 | 32 46 | bitrd | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 48 | mulcompi | |- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` C ) .N ( 2nd ` C ) ) ) |
|
| 49 | fvex | |- ( 1st ` A ) e. _V |
|
| 50 | fvex | |- ( 2nd ` B ) e. _V |
|
| 51 | fvex | |- ( 2nd ` C ) e. _V |
|
| 52 | mulcompi | |- ( x .N y ) = ( y .N x ) |
|
| 53 | mulasspi | |- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
|
| 54 | 49 50 51 52 53 51 | caov411 | |- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) |
| 55 | 48 54 | eqtri | |- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) |
| 56 | 55 | oveq2i | |- ( ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) ) |
| 57 | distrpi | |- ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( ( 1st ` C ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) ) = ( ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) ) |
|
| 58 | mulcompi | |- ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( ( 1st ` C ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) ) = ( ( ( ( 1st ` C ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
|
| 59 | 56 57 58 | 3eqtr2i | |- ( ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 1st ` C ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
| 60 | mulcompi | |- ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
|
| 61 | fvex | |- ( 1st ` C ) e. _V |
|
| 62 | fvex | |- ( 2nd ` A ) e. _V |
|
| 63 | 61 62 51 52 53 50 | caov411 | |- ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) |
| 64 | 60 63 | eqtri | |- ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) |
| 65 | mulcompi | |- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( ( 2nd ` C ) .N ( 2nd ` C ) ) ) |
|
| 66 | fvex | |- ( 1st ` B ) e. _V |
|
| 67 | 66 62 51 52 53 51 | caov411 | |- ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( ( 2nd ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
| 68 | 65 67 | eqtri | |- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
| 69 | 64 68 | oveq12i | |- ( ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( ( 2nd ` C ) .N ( 2nd ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) ) |
| 70 | distrpi | |- ( ( ( 2nd ` C ) .N ( 2nd ` A ) ) .N ( ( ( 1st ` C ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) ) = ( ( ( ( 2nd ` C ) .N ( 2nd ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) ) |
|
| 71 | mulcompi | |- ( ( ( 2nd ` C ) .N ( 2nd ` A ) ) .N ( ( ( 1st ` C ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) ) = ( ( ( ( 1st ` C ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) .N ( ( 2nd ` C ) .N ( 2nd ` A ) ) ) |
|
| 72 | 69 70 71 | 3eqtr2i | |- ( ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( ( 1st ` C ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) .N ( ( 2nd ` C ) .N ( 2nd ` A ) ) ) |
| 73 | 59 72 | breq12i | |- ( ( ( ( ( 2nd ` C ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) |
| 74 | 47 73 | bitrdi | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 75 | ordpipq | |- ( <. ( ( ( 1st ` C ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` C ) ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. |
|
| 76 | 74 75 | bitr4di | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 77 | 17 26 76 | 3bitr4rd | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 78 | 6 77 | bitrd | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A( C +Q A ) |
| 79 | 2 3 4 78 | ndmovord | |- ( C e. Q. -> ( A( C +Q A ) |