This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablcom.b | |- B = ( Base ` G ) |
|
| ablcom.p | |- .+ = ( +g ` G ) |
||
| Assertion | cmncom | |- ( ( G e. CMnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.b | |- B = ( Base ` G ) |
|
| 2 | ablcom.p | |- .+ = ( +g ` G ) |
|
| 3 | 1 2 | iscmn | |- ( G e. CMnd <-> ( G e. Mnd /\ A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) ) |
| 4 | 3 | simprbi | |- ( G e. CMnd -> A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) ) |
| 5 | rsp2 | |- ( A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) -> ( ( x e. B /\ y e. B ) -> ( x .+ y ) = ( y .+ x ) ) ) |
|
| 6 | 5 | imp | |- ( ( A. x e. B A. y e. B ( x .+ y ) = ( y .+ x ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) = ( y .+ x ) ) |
| 7 | 4 6 | sylan | |- ( ( G e. CMnd /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) = ( y .+ x ) ) |
| 8 | 7 | caovcomg | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B ) ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| 9 | 8 | 3impb | |- ( ( G e. CMnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) |