This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: ( X + A ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( X ^ k ) ) . (Contributed by AV, 25-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cply1binom.p | ||
| cply1binom.x | |||
| cply1binom.a | |||
| cply1binom.m | |||
| cply1binom.t | |||
| cply1binom.g | |||
| cply1binom.e | |||
| cply1binom.b | |||
| Assertion | lply1binom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cply1binom.p | ||
| 2 | cply1binom.x | ||
| 3 | cply1binom.a | ||
| 4 | cply1binom.m | ||
| 5 | cply1binom.t | ||
| 6 | cply1binom.g | ||
| 7 | cply1binom.e | ||
| 8 | cply1binom.b | ||
| 9 | crngring | ||
| 10 | 1 | ply1ring | |
| 11 | ringcmn | ||
| 12 | 9 10 11 | 3syl | |
| 13 | 12 | 3ad2ant1 | |
| 14 | 2 1 8 | vr1cl | |
| 15 | 9 14 | syl | |
| 16 | 15 | 3ad2ant1 | |
| 17 | simp3 | ||
| 18 | 8 3 | cmncom | |
| 19 | 13 16 17 18 | syl3anc | |
| 20 | 19 | oveq2d | |
| 21 | 1 | ply1crng | |
| 22 | 21 | 3ad2ant1 | |
| 23 | simp2 | ||
| 24 | 8 | eleq2i | |
| 25 | 24 | biimpi | |
| 26 | 25 | 3ad2ant3 | |
| 27 | 15 8 | eleqtrdi | |
| 28 | 27 | 3ad2ant1 | |
| 29 | eqid | ||
| 30 | 29 4 5 3 6 7 | crngbinom | |
| 31 | 22 23 26 28 30 | syl22anc | |
| 32 | 20 31 | eqtrd |