This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for relogmul and relogdiv . Remark of Cohen p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | relogoprlem.1 | |- ( ( ( log ` A ) e. CC /\ ( log ` B ) e. CC ) -> ( exp ` ( ( log ` A ) F ( log ` B ) ) ) = ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) |
|
| relogoprlem.2 | |- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( ( log ` A ) F ( log ` B ) ) e. RR ) |
||
| Assertion | relogoprlem | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( A G B ) ) = ( ( log ` A ) F ( log ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogoprlem.1 | |- ( ( ( log ` A ) e. CC /\ ( log ` B ) e. CC ) -> ( exp ` ( ( log ` A ) F ( log ` B ) ) ) = ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) |
|
| 2 | relogoprlem.2 | |- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( ( log ` A ) F ( log ` B ) ) e. RR ) |
|
| 3 | reeflog | |- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
|
| 4 | reeflog | |- ( B e. RR+ -> ( exp ` ( log ` B ) ) = B ) |
|
| 5 | 3 4 | oveqan12d | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) = ( A G B ) ) |
| 6 | 5 | fveq2d | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) = ( log ` ( A G B ) ) ) |
| 7 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 8 | relogcl | |- ( B e. RR+ -> ( log ` B ) e. RR ) |
|
| 9 | recn | |- ( ( log ` A ) e. RR -> ( log ` A ) e. CC ) |
|
| 10 | recn | |- ( ( log ` B ) e. RR -> ( log ` B ) e. CC ) |
|
| 11 | 1 | fveq2d | |- ( ( ( log ` A ) e. CC /\ ( log ` B ) e. CC ) -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) ) |
| 12 | 9 10 11 | syl2an | |- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) ) |
| 13 | relogef | |- ( ( ( log ` A ) F ( log ` B ) ) e. RR -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) |
|
| 14 | 2 13 | syl | |- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) |
| 15 | 12 14 | eqtr3d | |- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) |
| 16 | 7 8 15 | syl2an | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) |
| 17 | 6 16 | eqtr3d | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( A G B ) ) = ( ( log ` A ) F ( log ` B ) ) ) |