This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real part of a complex number representation. Definition 10-3.1 of Gleason p. 132. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | crim | |- ( ( A e. RR /\ B e. RR ) -> ( Im ` ( A + ( _i x. B ) ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | recn | |- ( B e. RR -> B e. CC ) |
|
| 4 | mulcl | |- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
|
| 5 | 2 3 4 | sylancr | |- ( B e. RR -> ( _i x. B ) e. CC ) |
| 6 | addcl | |- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + ( _i x. B ) ) e. CC ) |
|
| 7 | 1 5 6 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) |
| 8 | imval | |- ( ( A + ( _i x. B ) ) e. CC -> ( Im ` ( A + ( _i x. B ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( Im ` ( A + ( _i x. B ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) |
| 10 | 2 4 | mpan | |- ( B e. CC -> ( _i x. B ) e. CC ) |
| 11 | ine0 | |- _i =/= 0 |
|
| 12 | divdir | |- ( ( A e. CC /\ ( _i x. B ) e. CC /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
|
| 13 | 12 | 3expa | |- ( ( ( A e. CC /\ ( _i x. B ) e. CC ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
| 14 | 2 11 13 | mpanr12 | |- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
| 15 | 10 14 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
| 16 | divrec2 | |- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) |
|
| 17 | 2 11 16 | mp3an23 | |- ( A e. CC -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) |
| 18 | irec | |- ( 1 / _i ) = -u _i |
|
| 19 | 18 | oveq1i | |- ( ( 1 / _i ) x. A ) = ( -u _i x. A ) |
| 20 | 19 | a1i | |- ( A e. CC -> ( ( 1 / _i ) x. A ) = ( -u _i x. A ) ) |
| 21 | mulneg12 | |- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
|
| 22 | 2 21 | mpan | |- ( A e. CC -> ( -u _i x. A ) = ( _i x. -u A ) ) |
| 23 | 17 20 22 | 3eqtrd | |- ( A e. CC -> ( A / _i ) = ( _i x. -u A ) ) |
| 24 | divcan3 | |- ( ( B e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. B ) / _i ) = B ) |
|
| 25 | 2 11 24 | mp3an23 | |- ( B e. CC -> ( ( _i x. B ) / _i ) = B ) |
| 26 | 23 25 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A / _i ) + ( ( _i x. B ) / _i ) ) = ( ( _i x. -u A ) + B ) ) |
| 27 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 28 | mulcl | |- ( ( _i e. CC /\ -u A e. CC ) -> ( _i x. -u A ) e. CC ) |
|
| 29 | 2 27 28 | sylancr | |- ( A e. CC -> ( _i x. -u A ) e. CC ) |
| 30 | addcom | |- ( ( ( _i x. -u A ) e. CC /\ B e. CC ) -> ( ( _i x. -u A ) + B ) = ( B + ( _i x. -u A ) ) ) |
|
| 31 | 29 30 | sylan | |- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. -u A ) + B ) = ( B + ( _i x. -u A ) ) ) |
| 32 | 15 26 31 | 3eqtrrd | |- ( ( A e. CC /\ B e. CC ) -> ( B + ( _i x. -u A ) ) = ( ( A + ( _i x. B ) ) / _i ) ) |
| 33 | 1 3 32 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( B + ( _i x. -u A ) ) = ( ( A + ( _i x. B ) ) / _i ) ) |
| 34 | 33 | fveq2d | |- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) |
| 35 | id | |- ( B e. RR -> B e. RR ) |
|
| 36 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 37 | crre | |- ( ( B e. RR /\ -u A e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = B ) |
|
| 38 | 35 36 37 | syl2anr | |- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = B ) |
| 39 | 9 34 38 | 3eqtr2d | |- ( ( A e. RR /\ B e. RR ) -> ( Im ` ( A + ( _i x. B ) ) ) = B ) |