This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of _i x. _pi is -u 1 . (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efipi | |- ( exp ` ( _i x. _pi ) ) = -u 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | |- _pi e. CC |
|
| 2 | efival | |- ( _pi e. CC -> ( exp ` ( _i x. _pi ) ) = ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( exp ` ( _i x. _pi ) ) = ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) |
| 4 | cospi | |- ( cos ` _pi ) = -u 1 |
|
| 5 | sinpi | |- ( sin ` _pi ) = 0 |
|
| 6 | 5 | oveq2i | |- ( _i x. ( sin ` _pi ) ) = ( _i x. 0 ) |
| 7 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 8 | 6 7 | eqtri | |- ( _i x. ( sin ` _pi ) ) = 0 |
| 9 | 4 8 | oveq12i | |- ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) = ( -u 1 + 0 ) |
| 10 | neg1cn | |- -u 1 e. CC |
|
| 11 | 10 | addridi | |- ( -u 1 + 0 ) = -u 1 |
| 12 | 9 11 | eqtri | |- ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) = -u 1 |
| 13 | 3 12 | eqtri | |- ( exp ` ( _i x. _pi ) ) = -u 1 |