This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The logarithm of a factorial can be expressed as a finite sum of logs. (Contributed by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logfac | |- ( N e. NN0 -> ( log ` ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( log ` k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | rpmulcl | |- ( ( k e. RR+ /\ n e. RR+ ) -> ( k x. n ) e. RR+ ) |
|
| 3 | 2 | adantl | |- ( ( N e. NN /\ ( k e. RR+ /\ n e. RR+ ) ) -> ( k x. n ) e. RR+ ) |
| 4 | fvi | |- ( k e. _V -> ( _I ` k ) = k ) |
|
| 5 | 4 | elv | |- ( _I ` k ) = k |
| 6 | elfznn | |- ( k e. ( 1 ... N ) -> k e. NN ) |
|
| 7 | 6 | adantl | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> k e. NN ) |
| 8 | 7 | nnrpd | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> k e. RR+ ) |
| 9 | 5 8 | eqeltrid | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( _I ` k ) e. RR+ ) |
| 10 | elnnuz | |- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
|
| 11 | 10 | biimpi | |- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
| 12 | relogmul | |- ( ( k e. RR+ /\ n e. RR+ ) -> ( log ` ( k x. n ) ) = ( ( log ` k ) + ( log ` n ) ) ) |
|
| 13 | 12 | adantl | |- ( ( N e. NN /\ ( k e. RR+ /\ n e. RR+ ) ) -> ( log ` ( k x. n ) ) = ( ( log ` k ) + ( log ` n ) ) ) |
| 14 | 5 | fveq2i | |- ( log ` ( _I ` k ) ) = ( log ` k ) |
| 15 | 14 | a1i | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( log ` ( _I ` k ) ) = ( log ` k ) ) |
| 16 | 3 9 11 13 15 | seqhomo | |- ( N e. NN -> ( log ` ( seq 1 ( x. , _I ) ` N ) ) = ( seq 1 ( + , log ) ` N ) ) |
| 17 | facnn | |- ( N e. NN -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) |
|
| 18 | 17 | fveq2d | |- ( N e. NN -> ( log ` ( ! ` N ) ) = ( log ` ( seq 1 ( x. , _I ) ` N ) ) ) |
| 19 | eqidd | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( log ` k ) = ( log ` k ) ) |
|
| 20 | relogcl | |- ( k e. RR+ -> ( log ` k ) e. RR ) |
|
| 21 | 8 20 | syl | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( log ` k ) e. RR ) |
| 22 | 21 | recnd | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( log ` k ) e. CC ) |
| 23 | 19 11 22 | fsumser | |- ( N e. NN -> sum_ k e. ( 1 ... N ) ( log ` k ) = ( seq 1 ( + , log ) ` N ) ) |
| 24 | 16 18 23 | 3eqtr4d | |- ( N e. NN -> ( log ` ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( log ` k ) ) |
| 25 | log1 | |- ( log ` 1 ) = 0 |
|
| 26 | sum0 | |- sum_ k e. (/) ( log ` k ) = 0 |
|
| 27 | 25 26 | eqtr4i | |- ( log ` 1 ) = sum_ k e. (/) ( log ` k ) |
| 28 | fveq2 | |- ( N = 0 -> ( ! ` N ) = ( ! ` 0 ) ) |
|
| 29 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 30 | 28 29 | eqtrdi | |- ( N = 0 -> ( ! ` N ) = 1 ) |
| 31 | 30 | fveq2d | |- ( N = 0 -> ( log ` ( ! ` N ) ) = ( log ` 1 ) ) |
| 32 | oveq2 | |- ( N = 0 -> ( 1 ... N ) = ( 1 ... 0 ) ) |
|
| 33 | fz10 | |- ( 1 ... 0 ) = (/) |
|
| 34 | 32 33 | eqtrdi | |- ( N = 0 -> ( 1 ... N ) = (/) ) |
| 35 | 34 | sumeq1d | |- ( N = 0 -> sum_ k e. ( 1 ... N ) ( log ` k ) = sum_ k e. (/) ( log ` k ) ) |
| 36 | 27 31 35 | 3eqtr4a | |- ( N = 0 -> ( log ` ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( log ` k ) ) |
| 37 | 24 36 | jaoi | |- ( ( N e. NN \/ N = 0 ) -> ( log ` ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( log ` k ) ) |
| 38 | 1 37 | sylbi | |- ( N e. NN0 -> ( log ` ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( log ` k ) ) |