This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The logarithm of a factorial can be expressed as a finite sum of logs. (Contributed by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logfac | ⊢ ( 𝑁 ∈ ℕ0 → ( log ‘ ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | rpmulcl | ⊢ ( ( 𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑘 · 𝑛 ) ∈ ℝ+ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ) → ( 𝑘 · 𝑛 ) ∈ ℝ+ ) |
| 4 | fvi | ⊢ ( 𝑘 ∈ V → ( I ‘ 𝑘 ) = 𝑘 ) | |
| 5 | 4 | elv | ⊢ ( I ‘ 𝑘 ) = 𝑘 |
| 6 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
| 8 | 7 | nnrpd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℝ+ ) |
| 9 | 5 8 | eqeltrid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( I ‘ 𝑘 ) ∈ ℝ+ ) |
| 10 | elnnuz | ⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 11 | 10 | biimpi | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 12 | relogmul | ⊢ ( ( 𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( log ‘ ( 𝑘 · 𝑛 ) ) = ( ( log ‘ 𝑘 ) + ( log ‘ 𝑛 ) ) ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ) → ( log ‘ ( 𝑘 · 𝑛 ) ) = ( ( log ‘ 𝑘 ) + ( log ‘ 𝑛 ) ) ) |
| 14 | 5 | fveq2i | ⊢ ( log ‘ ( I ‘ 𝑘 ) ) = ( log ‘ 𝑘 ) |
| 15 | 14 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ ( I ‘ 𝑘 ) ) = ( log ‘ 𝑘 ) ) |
| 16 | 3 9 11 13 15 | seqhomo | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( seq 1 ( · , I ) ‘ 𝑁 ) ) = ( seq 1 ( + , log ) ‘ 𝑁 ) ) |
| 17 | facnn | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) = ( seq 1 ( · , I ) ‘ 𝑁 ) ) | |
| 18 | 17 | fveq2d | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ! ‘ 𝑁 ) ) = ( log ‘ ( seq 1 ( · , I ) ‘ 𝑁 ) ) ) |
| 19 | eqidd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ 𝑘 ) = ( log ‘ 𝑘 ) ) | |
| 20 | relogcl | ⊢ ( 𝑘 ∈ ℝ+ → ( log ‘ 𝑘 ) ∈ ℝ ) | |
| 21 | 8 20 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ 𝑘 ) ∈ ℝ ) |
| 22 | 21 | recnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ 𝑘 ) ∈ ℂ ) |
| 23 | 19 11 22 | fsumser | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) = ( seq 1 ( + , log ) ‘ 𝑁 ) ) |
| 24 | 16 18 23 | 3eqtr4d | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) ) |
| 25 | log1 | ⊢ ( log ‘ 1 ) = 0 | |
| 26 | sum0 | ⊢ Σ 𝑘 ∈ ∅ ( log ‘ 𝑘 ) = 0 | |
| 27 | 25 26 | eqtr4i | ⊢ ( log ‘ 1 ) = Σ 𝑘 ∈ ∅ ( log ‘ 𝑘 ) |
| 28 | fveq2 | ⊢ ( 𝑁 = 0 → ( ! ‘ 𝑁 ) = ( ! ‘ 0 ) ) | |
| 29 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 30 | 28 29 | eqtrdi | ⊢ ( 𝑁 = 0 → ( ! ‘ 𝑁 ) = 1 ) |
| 31 | 30 | fveq2d | ⊢ ( 𝑁 = 0 → ( log ‘ ( ! ‘ 𝑁 ) ) = ( log ‘ 1 ) ) |
| 32 | oveq2 | ⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ( 1 ... 0 ) ) | |
| 33 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 34 | 32 33 | eqtrdi | ⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ∅ ) |
| 35 | 34 | sumeq1d | ⊢ ( 𝑁 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) = Σ 𝑘 ∈ ∅ ( log ‘ 𝑘 ) ) |
| 36 | 27 31 35 | 3eqtr4a | ⊢ ( 𝑁 = 0 → ( log ‘ ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) ) |
| 37 | 24 36 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( log ‘ ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) ) |
| 38 | 1 37 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → ( log ‘ ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) ) |