This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsneg.b | |- B = ( Base ` W ) |
|
| lmodvsneg.f | |- F = ( Scalar ` W ) |
||
| lmodvsneg.s | |- .x. = ( .s ` W ) |
||
| lmodvsneg.n | |- N = ( invg ` W ) |
||
| lmodvsneg.k | |- K = ( Base ` F ) |
||
| lmodvsneg.m | |- M = ( invg ` F ) |
||
| lmodvsneg.w | |- ( ph -> W e. LMod ) |
||
| lmodvsneg.x | |- ( ph -> X e. B ) |
||
| lmodvsneg.r | |- ( ph -> R e. K ) |
||
| Assertion | lmodvsneg | |- ( ph -> ( N ` ( R .x. X ) ) = ( ( M ` R ) .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsneg.b | |- B = ( Base ` W ) |
|
| 2 | lmodvsneg.f | |- F = ( Scalar ` W ) |
|
| 3 | lmodvsneg.s | |- .x. = ( .s ` W ) |
|
| 4 | lmodvsneg.n | |- N = ( invg ` W ) |
|
| 5 | lmodvsneg.k | |- K = ( Base ` F ) |
|
| 6 | lmodvsneg.m | |- M = ( invg ` F ) |
|
| 7 | lmodvsneg.w | |- ( ph -> W e. LMod ) |
|
| 8 | lmodvsneg.x | |- ( ph -> X e. B ) |
|
| 9 | lmodvsneg.r | |- ( ph -> R e. K ) |
|
| 10 | 2 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 11 | 7 10 | syl | |- ( ph -> F e. Ring ) |
| 12 | ringgrp | |- ( F e. Ring -> F e. Grp ) |
|
| 13 | 11 12 | syl | |- ( ph -> F e. Grp ) |
| 14 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 15 | 5 14 | ringidcl | |- ( F e. Ring -> ( 1r ` F ) e. K ) |
| 16 | 11 15 | syl | |- ( ph -> ( 1r ` F ) e. K ) |
| 17 | 5 6 | grpinvcl | |- ( ( F e. Grp /\ ( 1r ` F ) e. K ) -> ( M ` ( 1r ` F ) ) e. K ) |
| 18 | 13 16 17 | syl2anc | |- ( ph -> ( M ` ( 1r ` F ) ) e. K ) |
| 19 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 20 | 1 2 3 5 19 | lmodvsass | |- ( ( W e. LMod /\ ( ( M ` ( 1r ` F ) ) e. K /\ R e. K /\ X e. B ) ) -> ( ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) .x. X ) = ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) ) |
| 21 | 7 18 9 8 20 | syl13anc | |- ( ph -> ( ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) .x. X ) = ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) ) |
| 22 | 5 19 14 6 11 9 | ringnegl | |- ( ph -> ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) = ( M ` R ) ) |
| 23 | 22 | oveq1d | |- ( ph -> ( ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) .x. X ) = ( ( M ` R ) .x. X ) ) |
| 24 | 1 2 3 5 | lmodvscl | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( R .x. X ) e. B ) |
| 25 | 7 9 8 24 | syl3anc | |- ( ph -> ( R .x. X ) e. B ) |
| 26 | 1 4 2 3 14 6 | lmodvneg1 | |- ( ( W e. LMod /\ ( R .x. X ) e. B ) -> ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) = ( N ` ( R .x. X ) ) ) |
| 27 | 7 25 26 | syl2anc | |- ( ph -> ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) = ( N ` ( R .x. X ) ) ) |
| 28 | 21 23 27 | 3eqtr3rd | |- ( ph -> ( N ` ( R .x. X ) ) = ( ( M ` R ) .x. X ) ) |