This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a real-valued function, B is a limit point of its domain, and the limit of F at B exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcrecl.1 | |- ( ph -> F : A --> RR ) |
|
| limcrecl.2 | |- ( ph -> A C_ CC ) |
||
| limcrecl.3 | |- ( ph -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) ) |
||
| limcrecl.4 | |- ( ph -> L e. ( F limCC B ) ) |
||
| Assertion | limcrecl | |- ( ph -> L e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcrecl.1 | |- ( ph -> F : A --> RR ) |
|
| 2 | limcrecl.2 | |- ( ph -> A C_ CC ) |
|
| 3 | limcrecl.3 | |- ( ph -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) ) |
|
| 4 | limcrecl.4 | |- ( ph -> L e. ( F limCC B ) ) |
|
| 5 | 4 | adantr | |- ( ( ph /\ -. L e. RR ) -> L e. ( F limCC B ) ) |
| 6 | limccl | |- ( F limCC B ) C_ CC |
|
| 7 | 6 4 | sselid | |- ( ph -> L e. CC ) |
| 8 | 7 | adantr | |- ( ( ph /\ -. L e. RR ) -> L e. CC ) |
| 9 | simpr | |- ( ( ph /\ -. L e. RR ) -> -. L e. RR ) |
|
| 10 | 8 9 | eldifd | |- ( ( ph /\ -. L e. RR ) -> L e. ( CC \ RR ) ) |
| 11 | 10 | dstregt0 | |- ( ( ph /\ -. L e. RR ) -> E. x e. RR+ A. w e. RR x < ( abs ` ( L - w ) ) ) |
| 12 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 13 | 12 | a1i | |- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 14 | 2 | ad4antr | |- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> A C_ CC ) |
| 15 | 14 | ssdifssd | |- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> ( A \ { B } ) C_ CC ) |
| 16 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 17 | 16 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 18 | 17 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 19 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 20 | 2 19 | sseqtrdi | |- ( ph -> A C_ U. ( TopOpen ` CCfld ) ) |
| 21 | eqid | |- U. ( TopOpen ` CCfld ) = U. ( TopOpen ` CCfld ) |
|
| 22 | 21 | lpdifsn | |- ( ( ( TopOpen ` CCfld ) e. Top /\ A C_ U. ( TopOpen ` CCfld ) ) -> ( B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) <-> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A \ { B } ) ) ) ) |
| 23 | 18 20 22 | syl2anc | |- ( ph -> ( B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) <-> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A \ { B } ) ) ) ) |
| 24 | 3 23 | mpbid | |- ( ph -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A \ { B } ) ) ) |
| 25 | 24 | ad4antr | |- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A \ { B } ) ) ) |
| 26 | simpr | |- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> y e. RR+ ) |
|
| 27 | 16 | cnfldtopn | |- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 28 | 27 | lpbl | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( A \ { B } ) C_ CC /\ B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A \ { B } ) ) ) /\ y e. RR+ ) -> E. z e. ( A \ { B } ) z e. ( B ( ball ` ( abs o. - ) ) y ) ) |
| 29 | 13 15 25 26 28 | syl31anc | |- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> E. z e. ( A \ { B } ) z e. ( B ( ball ` ( abs o. - ) ) y ) ) |
| 30 | eldif | |- ( z e. ( A \ { B } ) <-> ( z e. A /\ -. z e. { B } ) ) |
|
| 31 | 30 | anbi1i | |- ( ( z e. ( A \ { B } ) /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) <-> ( ( z e. A /\ -. z e. { B } ) /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) |
| 32 | anass | |- ( ( ( z e. A /\ -. z e. { B } ) /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) <-> ( z e. A /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) ) |
|
| 33 | 31 32 | bitri | |- ( ( z e. ( A \ { B } ) /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) <-> ( z e. A /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) ) |
| 34 | 33 | rexbii2 | |- ( E. z e. ( A \ { B } ) z e. ( B ( ball ` ( abs o. - ) ) y ) <-> E. z e. A ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) |
| 35 | 29 34 | sylib | |- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> E. z e. A ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) |
| 36 | simprl | |- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> -. z e. { B } ) |
|
| 37 | velsn | |- ( z e. { B } <-> z = B ) |
|
| 38 | 37 | necon3bbii | |- ( -. z e. { B } <-> z =/= B ) |
| 39 | 36 38 | sylib | |- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> z =/= B ) |
| 40 | simp-5l | |- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ph ) |
|
| 41 | simplr | |- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> y e. RR+ ) |
|
| 42 | simprr | |- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> z e. ( B ( ball ` ( abs o. - ) ) y ) ) |
|
| 43 | simp3 | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> z e. ( B ( ball ` ( abs o. - ) ) y ) ) |
|
| 44 | 12 | a1i | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 45 | 19 | lpss | |- ( ( ( TopOpen ` CCfld ) e. Top /\ A C_ CC ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) C_ CC ) |
| 46 | 18 2 45 | syl2anc | |- ( ph -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) C_ CC ) |
| 47 | 46 3 | sseldd | |- ( ph -> B e. CC ) |
| 48 | 47 | 3ad2ant1 | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> B e. CC ) |
| 49 | rpxr | |- ( y e. RR+ -> y e. RR* ) |
|
| 50 | 49 | 3ad2ant2 | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> y e. RR* ) |
| 51 | elbl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ B e. CC /\ y e. RR* ) -> ( z e. ( B ( ball ` ( abs o. - ) ) y ) <-> ( z e. CC /\ ( B ( abs o. - ) z ) < y ) ) ) |
|
| 52 | 44 48 50 51 | syl3anc | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( z e. ( B ( ball ` ( abs o. - ) ) y ) <-> ( z e. CC /\ ( B ( abs o. - ) z ) < y ) ) ) |
| 53 | 43 52 | mpbid | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( z e. CC /\ ( B ( abs o. - ) z ) < y ) ) |
| 54 | 53 | simpld | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> z e. CC ) |
| 55 | 54 48 | abssubd | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( abs ` ( z - B ) ) = ( abs ` ( B - z ) ) ) |
| 56 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 57 | 56 | cnmetdval | |- ( ( B e. CC /\ z e. CC ) -> ( B ( abs o. - ) z ) = ( abs ` ( B - z ) ) ) |
| 58 | 48 54 57 | syl2anc | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( B ( abs o. - ) z ) = ( abs ` ( B - z ) ) ) |
| 59 | 53 | simprd | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( B ( abs o. - ) z ) < y ) |
| 60 | 58 59 | eqbrtrrd | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( abs ` ( B - z ) ) < y ) |
| 61 | 55 60 | eqbrtrd | |- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( abs ` ( z - B ) ) < y ) |
| 62 | 40 41 42 61 | syl3anc | |- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ( abs ` ( z - B ) ) < y ) |
| 63 | 39 62 | jca | |- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ( z =/= B /\ ( abs ` ( z - B ) ) < y ) ) |
| 64 | 63 | adantlr | |- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ( z =/= B /\ ( abs ` ( z - B ) ) < y ) ) |
| 65 | 40 | adantlr | |- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ph ) |
| 66 | simplr | |- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> z e. A ) |
|
| 67 | 65 66 | jca | |- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ( ph /\ z e. A ) ) |
| 68 | simp-5r | |- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> x e. RR+ ) |
|
| 69 | simp-4r | |- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> A. w e. RR x < ( abs ` ( L - w ) ) ) |
|
| 70 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 71 | 70 | ad2antlr | |- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> x e. RR ) |
| 72 | 1 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( F ` z ) e. RR ) |
| 73 | 72 | recnd | |- ( ( ph /\ z e. A ) -> ( F ` z ) e. CC ) |
| 74 | 73 | ad2antrr | |- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> ( F ` z ) e. CC ) |
| 75 | 7 | ad3antrrr | |- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> L e. CC ) |
| 76 | 74 75 | subcld | |- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> ( ( F ` z ) - L ) e. CC ) |
| 77 | 76 | abscld | |- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> ( abs ` ( ( F ` z ) - L ) ) e. RR ) |
| 78 | 72 | adantr | |- ( ( ( ph /\ z e. A ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> ( F ` z ) e. RR ) |
| 79 | nfv | |- F/ w ph |
|
| 80 | nfra1 | |- F/ w A. w e. RR x < ( abs ` ( L - w ) ) |
|
| 81 | 79 80 | nfan | |- F/ w ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) |
| 82 | rspa | |- ( ( A. w e. RR x < ( abs ` ( L - w ) ) /\ w e. RR ) -> x < ( abs ` ( L - w ) ) ) |
|
| 83 | 82 | adantll | |- ( ( ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ w e. RR ) -> x < ( abs ` ( L - w ) ) ) |
| 84 | 7 | adantr | |- ( ( ph /\ w e. RR ) -> L e. CC ) |
| 85 | ax-resscn | |- RR C_ CC |
|
| 86 | 85 | a1i | |- ( ph -> RR C_ CC ) |
| 87 | 86 | sselda | |- ( ( ph /\ w e. RR ) -> w e. CC ) |
| 88 | 84 87 | abssubd | |- ( ( ph /\ w e. RR ) -> ( abs ` ( L - w ) ) = ( abs ` ( w - L ) ) ) |
| 89 | 88 | adantlr | |- ( ( ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ w e. RR ) -> ( abs ` ( L - w ) ) = ( abs ` ( w - L ) ) ) |
| 90 | 83 89 | breqtrd | |- ( ( ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ w e. RR ) -> x < ( abs ` ( w - L ) ) ) |
| 91 | 90 | ex | |- ( ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> ( w e. RR -> x < ( abs ` ( w - L ) ) ) ) |
| 92 | 81 91 | ralrimi | |- ( ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> A. w e. RR x < ( abs ` ( w - L ) ) ) |
| 93 | 92 | adantlr | |- ( ( ( ph /\ z e. A ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> A. w e. RR x < ( abs ` ( w - L ) ) ) |
| 94 | fvoveq1 | |- ( w = ( F ` z ) -> ( abs ` ( w - L ) ) = ( abs ` ( ( F ` z ) - L ) ) ) |
|
| 95 | 94 | breq2d | |- ( w = ( F ` z ) -> ( x < ( abs ` ( w - L ) ) <-> x < ( abs ` ( ( F ` z ) - L ) ) ) ) |
| 96 | 95 | rspcv | |- ( ( F ` z ) e. RR -> ( A. w e. RR x < ( abs ` ( w - L ) ) -> x < ( abs ` ( ( F ` z ) - L ) ) ) ) |
| 97 | 78 93 96 | sylc | |- ( ( ( ph /\ z e. A ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> x < ( abs ` ( ( F ` z ) - L ) ) ) |
| 98 | 97 | adantlr | |- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> x < ( abs ` ( ( F ` z ) - L ) ) ) |
| 99 | 71 77 98 | ltnsymd | |- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> -. ( abs ` ( ( F ` z ) - L ) ) < x ) |
| 100 | 67 68 69 99 | syl21anc | |- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> -. ( abs ` ( ( F ` z ) - L ) ) < x ) |
| 101 | 64 100 | jcnd | |- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> -. ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 102 | 101 | ex | |- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) -> ( ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> -. ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 103 | 102 | reximdva | |- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> ( E. z e. A ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> E. z e. A -. ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 104 | 35 103 | mpd | |- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> E. z e. A -. ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 105 | rexnal | |- ( E. z e. A -. ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) <-> -. A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
|
| 106 | 104 105 | sylib | |- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> -. A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 107 | 106 | nrexdv | |- ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> -. E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 108 | 107 | ex | |- ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) -> ( A. w e. RR x < ( abs ` ( L - w ) ) -> -. E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 109 | 108 | reximdva | |- ( ( ph /\ -. L e. RR ) -> ( E. x e. RR+ A. w e. RR x < ( abs ` ( L - w ) ) -> E. x e. RR+ -. E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 110 | 11 109 | mpd | |- ( ( ph /\ -. L e. RR ) -> E. x e. RR+ -. E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 111 | rexnal | |- ( E. x e. RR+ -. E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) <-> -. A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
|
| 112 | 110 111 | sylib | |- ( ( ph /\ -. L e. RR ) -> -. A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 113 | 112 | intnand | |- ( ( ph /\ -. L e. RR ) -> -. ( L e. CC /\ A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 114 | 1 86 | fssd | |- ( ph -> F : A --> CC ) |
| 115 | 114 2 47 | ellimc3 | |- ( ph -> ( L e. ( F limCC B ) <-> ( L e. CC /\ A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) ) |
| 116 | 115 | adantr | |- ( ( ph /\ -. L e. RR ) -> ( L e. ( F limCC B ) <-> ( L e. CC /\ A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) ) |
| 117 | 113 116 | mtbird | |- ( ( ph /\ -. L e. RR ) -> -. L e. ( F limCC B ) ) |
| 118 | 5 117 | condan | |- ( ph -> L e. RR ) |