This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: P is a limit point of S iff it is a limit point of S \ { P } . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | lpdifsn | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> P e. ( ( limPt ` J ) ` ( S \ { P } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | islp | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) ) |
| 3 | ssdifss | |- ( S C_ X -> ( S \ { P } ) C_ X ) |
|
| 4 | 1 | islp | |- ( ( J e. Top /\ ( S \ { P } ) C_ X ) -> ( P e. ( ( limPt ` J ) ` ( S \ { P } ) ) <-> P e. ( ( cls ` J ) ` ( ( S \ { P } ) \ { P } ) ) ) ) |
| 5 | 3 4 | sylan2 | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( limPt ` J ) ` ( S \ { P } ) ) <-> P e. ( ( cls ` J ) ` ( ( S \ { P } ) \ { P } ) ) ) ) |
| 6 | difabs | |- ( ( S \ { P } ) \ { P } ) = ( S \ { P } ) |
|
| 7 | 6 | fveq2i | |- ( ( cls ` J ) ` ( ( S \ { P } ) \ { P } ) ) = ( ( cls ` J ) ` ( S \ { P } ) ) |
| 8 | 7 | eleq2i | |- ( P e. ( ( cls ` J ) ` ( ( S \ { P } ) \ { P } ) ) <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) |
| 9 | 5 8 | bitrdi | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( limPt ` J ) ` ( S \ { P } ) ) <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) ) |
| 10 | 2 9 | bitr4d | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> P e. ( ( limPt ` J ) ` ( S \ { P } ) ) ) ) |