This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every ball around a limit point P of a subset S includes a member of S (even if P e/ S ). (Contributed by NM, 9-Nov-2007) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | lpbl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> E. x e. S x e. ( P ( ball ` D ) R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | |- J = ( MetOpen ` D ) |
|
| 2 | ineq1 | |- ( x = ( P ( ball ` D ) R ) -> ( x i^i ( S \ { P } ) ) = ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) ) |
|
| 3 | 2 | neeq1d | |- ( x = ( P ( ball ` D ) R ) -> ( ( x i^i ( S \ { P } ) ) =/= (/) <-> ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) =/= (/) ) ) |
| 4 | simpl3 | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> P e. ( ( limPt ` J ) ` S ) ) |
|
| 5 | simpl1 | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> D e. ( *Met ` X ) ) |
|
| 6 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 7 | 5 6 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> J e. Top ) |
| 8 | simpl2 | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> S C_ X ) |
|
| 9 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 10 | 5 9 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> X = U. J ) |
| 11 | 8 10 | sseqtrd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> S C_ U. J ) |
| 12 | eqid | |- U. J = U. J |
|
| 13 | 12 | lpss | |- ( ( J e. Top /\ S C_ U. J ) -> ( ( limPt ` J ) ` S ) C_ U. J ) |
| 14 | 7 11 13 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> ( ( limPt ` J ) ` S ) C_ U. J ) |
| 15 | 14 4 | sseldd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> P e. U. J ) |
| 16 | 12 | islp2 | |- ( ( J e. Top /\ S C_ U. J /\ P e. U. J ) -> ( P e. ( ( limPt ` J ) ` S ) <-> A. x e. ( ( nei ` J ) ` { P } ) ( x i^i ( S \ { P } ) ) =/= (/) ) ) |
| 17 | 7 11 15 16 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> ( P e. ( ( limPt ` J ) ` S ) <-> A. x e. ( ( nei ` J ) ` { P } ) ( x i^i ( S \ { P } ) ) =/= (/) ) ) |
| 18 | 4 17 | mpbid | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> A. x e. ( ( nei ` J ) ` { P } ) ( x i^i ( S \ { P } ) ) =/= (/) ) |
| 19 | 15 10 | eleqtrrd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> P e. X ) |
| 20 | simpr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> R e. RR+ ) |
|
| 21 | 1 | blnei | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR+ ) -> ( P ( ball ` D ) R ) e. ( ( nei ` J ) ` { P } ) ) |
| 22 | 5 19 20 21 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> ( P ( ball ` D ) R ) e. ( ( nei ` J ) ` { P } ) ) |
| 23 | 3 18 22 | rspcdva | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) =/= (/) ) |
| 24 | elin | |- ( x e. ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) <-> ( x e. ( P ( ball ` D ) R ) /\ x e. ( S \ { P } ) ) ) |
|
| 25 | eldifi | |- ( x e. ( S \ { P } ) -> x e. S ) |
|
| 26 | 25 | anim2i | |- ( ( x e. ( P ( ball ` D ) R ) /\ x e. ( S \ { P } ) ) -> ( x e. ( P ( ball ` D ) R ) /\ x e. S ) ) |
| 27 | 26 | ancomd | |- ( ( x e. ( P ( ball ` D ) R ) /\ x e. ( S \ { P } ) ) -> ( x e. S /\ x e. ( P ( ball ` D ) R ) ) ) |
| 28 | 24 27 | sylbi | |- ( x e. ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) -> ( x e. S /\ x e. ( P ( ball ` D ) R ) ) ) |
| 29 | 28 | eximi | |- ( E. x x e. ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) -> E. x ( x e. S /\ x e. ( P ( ball ` D ) R ) ) ) |
| 30 | n0 | |- ( ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) =/= (/) <-> E. x x e. ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) ) |
|
| 31 | df-rex | |- ( E. x e. S x e. ( P ( ball ` D ) R ) <-> E. x ( x e. S /\ x e. ( P ( ball ` D ) R ) ) ) |
|
| 32 | 29 30 31 | 3imtr4i | |- ( ( ( P ( ball ` D ) R ) i^i ( S \ { P } ) ) =/= (/) -> E. x e. S x e. ( P ( ball ` D ) R ) ) |
| 33 | 23 32 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ P e. ( ( limPt ` J ) ` S ) ) /\ R e. RR+ ) -> E. x e. S x e. ( P ( ball ` D ) R ) ) |