This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limcrcl | |- ( C e. ( F limCC B ) -> ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-limc | |- limCC = ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) |
|
| 2 | 1 | elmpocl | |- ( C e. ( F limCC B ) -> ( F e. ( CC ^pm CC ) /\ B e. CC ) ) |
| 3 | cnex | |- CC e. _V |
|
| 4 | 3 3 | elpm2 | |- ( F e. ( CC ^pm CC ) <-> ( F : dom F --> CC /\ dom F C_ CC ) ) |
| 5 | 4 | anbi1i | |- ( ( F e. ( CC ^pm CC ) /\ B e. CC ) <-> ( ( F : dom F --> CC /\ dom F C_ CC ) /\ B e. CC ) ) |
| 6 | df-3an | |- ( ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) <-> ( ( F : dom F --> CC /\ dom F C_ CC ) /\ B e. CC ) ) |
|
| 7 | 5 6 | bitr4i | |- ( ( F e. ( CC ^pm CC ) /\ B e. CC ) <-> ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) ) |
| 8 | 2 7 | sylib | |- ( C e. ( F limCC B ) -> ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) ) |