This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumge0.1 | |- ( ph -> A e. Fin ) |
|
| fsumge0.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| fsumge0.3 | |- ( ( ph /\ k e. A ) -> 0 <_ B ) |
||
| fsumge1.4 | |- ( k = M -> B = C ) |
||
| fsumge1.5 | |- ( ph -> M e. A ) |
||
| Assertion | fsumge1 | |- ( ph -> C <_ sum_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumge0.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 3 | fsumge0.3 | |- ( ( ph /\ k e. A ) -> 0 <_ B ) |
|
| 4 | fsumge1.4 | |- ( k = M -> B = C ) |
|
| 5 | fsumge1.5 | |- ( ph -> M e. A ) |
|
| 6 | 4 | eleq1d | |- ( k = M -> ( B e. CC <-> C e. CC ) ) |
| 7 | 2 | recnd | |- ( ( ph /\ k e. A ) -> B e. CC ) |
| 8 | 7 | ralrimiva | |- ( ph -> A. k e. A B e. CC ) |
| 9 | 6 8 5 | rspcdva | |- ( ph -> C e. CC ) |
| 10 | 4 | sumsn | |- ( ( M e. A /\ C e. CC ) -> sum_ k e. { M } B = C ) |
| 11 | 5 9 10 | syl2anc | |- ( ph -> sum_ k e. { M } B = C ) |
| 12 | 5 | snssd | |- ( ph -> { M } C_ A ) |
| 13 | 1 2 3 12 | fsumless | |- ( ph -> sum_ k e. { M } B <_ sum_ k e. A B ) |
| 14 | 11 13 | eqbrtrrd | |- ( ph -> C <_ sum_ k e. A B ) |