This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for latdisd . (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latdisd.b | |- B = ( Base ` K ) |
|
| latdisd.j | |- .\/ = ( join ` K ) |
||
| latdisd.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latdisdlem | |- ( K e. Lat -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latdisd.b | |- B = ( Base ` K ) |
|
| 2 | latdisd.j | |- .\/ = ( join ` K ) |
|
| 3 | latdisd.m | |- ./\ = ( meet ` K ) |
|
| 4 | 1 3 | latmcl | |- ( ( K e. Lat /\ x e. B /\ y e. B ) -> ( x ./\ y ) e. B ) |
| 5 | 4 | 3adant3r3 | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ y ) e. B ) |
| 6 | simpr1 | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> x e. B ) |
|
| 7 | simpr3 | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> z e. B ) |
|
| 8 | oveq1 | |- ( u = ( x ./\ y ) -> ( u .\/ ( v ./\ w ) ) = ( ( x ./\ y ) .\/ ( v ./\ w ) ) ) |
|
| 9 | oveq1 | |- ( u = ( x ./\ y ) -> ( u .\/ v ) = ( ( x ./\ y ) .\/ v ) ) |
|
| 10 | oveq1 | |- ( u = ( x ./\ y ) -> ( u .\/ w ) = ( ( x ./\ y ) .\/ w ) ) |
|
| 11 | 9 10 | oveq12d | |- ( u = ( x ./\ y ) -> ( ( u .\/ v ) ./\ ( u .\/ w ) ) = ( ( ( x ./\ y ) .\/ v ) ./\ ( ( x ./\ y ) .\/ w ) ) ) |
| 12 | 8 11 | eqeq12d | |- ( u = ( x ./\ y ) -> ( ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) <-> ( ( x ./\ y ) .\/ ( v ./\ w ) ) = ( ( ( x ./\ y ) .\/ v ) ./\ ( ( x ./\ y ) .\/ w ) ) ) ) |
| 13 | oveq1 | |- ( v = x -> ( v ./\ w ) = ( x ./\ w ) ) |
|
| 14 | 13 | oveq2d | |- ( v = x -> ( ( x ./\ y ) .\/ ( v ./\ w ) ) = ( ( x ./\ y ) .\/ ( x ./\ w ) ) ) |
| 15 | oveq2 | |- ( v = x -> ( ( x ./\ y ) .\/ v ) = ( ( x ./\ y ) .\/ x ) ) |
|
| 16 | 15 | oveq1d | |- ( v = x -> ( ( ( x ./\ y ) .\/ v ) ./\ ( ( x ./\ y ) .\/ w ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ w ) ) ) |
| 17 | 14 16 | eqeq12d | |- ( v = x -> ( ( ( x ./\ y ) .\/ ( v ./\ w ) ) = ( ( ( x ./\ y ) .\/ v ) ./\ ( ( x ./\ y ) .\/ w ) ) <-> ( ( x ./\ y ) .\/ ( x ./\ w ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ w ) ) ) ) |
| 18 | oveq2 | |- ( w = z -> ( x ./\ w ) = ( x ./\ z ) ) |
|
| 19 | 18 | oveq2d | |- ( w = z -> ( ( x ./\ y ) .\/ ( x ./\ w ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 20 | oveq2 | |- ( w = z -> ( ( x ./\ y ) .\/ w ) = ( ( x ./\ y ) .\/ z ) ) |
|
| 21 | 20 | oveq2d | |- ( w = z -> ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ w ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) ) |
| 22 | 19 21 | eqeq12d | |- ( w = z -> ( ( ( x ./\ y ) .\/ ( x ./\ w ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ w ) ) <-> ( ( x ./\ y ) .\/ ( x ./\ z ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) ) ) |
| 23 | 12 17 22 | rspc3v | |- ( ( ( x ./\ y ) e. B /\ x e. B /\ z e. B ) -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> ( ( x ./\ y ) .\/ ( x ./\ z ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) ) ) |
| 24 | 5 6 7 23 | syl3anc | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> ( ( x ./\ y ) .\/ ( x ./\ z ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) ) ) |
| 25 | 24 | imp | |- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( ( x ./\ y ) .\/ ( x ./\ z ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) ) |
| 26 | simpl | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> K e. Lat ) |
|
| 27 | 1 2 | latjcom | |- ( ( K e. Lat /\ ( x ./\ y ) e. B /\ x e. B ) -> ( ( x ./\ y ) .\/ x ) = ( x .\/ ( x ./\ y ) ) ) |
| 28 | 26 5 6 27 | syl3anc | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ./\ y ) .\/ x ) = ( x .\/ ( x ./\ y ) ) ) |
| 29 | 1 2 3 | latabs1 | |- ( ( K e. Lat /\ x e. B /\ y e. B ) -> ( x .\/ ( x ./\ y ) ) = x ) |
| 30 | 29 | 3adant3r3 | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .\/ ( x ./\ y ) ) = x ) |
| 31 | 28 30 | eqtrd | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ./\ y ) .\/ x ) = x ) |
| 32 | 1 2 | latjcom | |- ( ( K e. Lat /\ ( x ./\ y ) e. B /\ z e. B ) -> ( ( x ./\ y ) .\/ z ) = ( z .\/ ( x ./\ y ) ) ) |
| 33 | 26 5 7 32 | syl3anc | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ./\ y ) .\/ z ) = ( z .\/ ( x ./\ y ) ) ) |
| 34 | 31 33 | oveq12d | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) = ( x ./\ ( z .\/ ( x ./\ y ) ) ) ) |
| 35 | 34 | adantr | |- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) = ( x ./\ ( z .\/ ( x ./\ y ) ) ) ) |
| 36 | simpr2 | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> y e. B ) |
|
| 37 | oveq1 | |- ( u = z -> ( u .\/ ( v ./\ w ) ) = ( z .\/ ( v ./\ w ) ) ) |
|
| 38 | oveq1 | |- ( u = z -> ( u .\/ v ) = ( z .\/ v ) ) |
|
| 39 | oveq1 | |- ( u = z -> ( u .\/ w ) = ( z .\/ w ) ) |
|
| 40 | 38 39 | oveq12d | |- ( u = z -> ( ( u .\/ v ) ./\ ( u .\/ w ) ) = ( ( z .\/ v ) ./\ ( z .\/ w ) ) ) |
| 41 | 37 40 | eqeq12d | |- ( u = z -> ( ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) <-> ( z .\/ ( v ./\ w ) ) = ( ( z .\/ v ) ./\ ( z .\/ w ) ) ) ) |
| 42 | 13 | oveq2d | |- ( v = x -> ( z .\/ ( v ./\ w ) ) = ( z .\/ ( x ./\ w ) ) ) |
| 43 | oveq2 | |- ( v = x -> ( z .\/ v ) = ( z .\/ x ) ) |
|
| 44 | 43 | oveq1d | |- ( v = x -> ( ( z .\/ v ) ./\ ( z .\/ w ) ) = ( ( z .\/ x ) ./\ ( z .\/ w ) ) ) |
| 45 | 42 44 | eqeq12d | |- ( v = x -> ( ( z .\/ ( v ./\ w ) ) = ( ( z .\/ v ) ./\ ( z .\/ w ) ) <-> ( z .\/ ( x ./\ w ) ) = ( ( z .\/ x ) ./\ ( z .\/ w ) ) ) ) |
| 46 | oveq2 | |- ( w = y -> ( x ./\ w ) = ( x ./\ y ) ) |
|
| 47 | 46 | oveq2d | |- ( w = y -> ( z .\/ ( x ./\ w ) ) = ( z .\/ ( x ./\ y ) ) ) |
| 48 | oveq2 | |- ( w = y -> ( z .\/ w ) = ( z .\/ y ) ) |
|
| 49 | 48 | oveq2d | |- ( w = y -> ( ( z .\/ x ) ./\ ( z .\/ w ) ) = ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) |
| 50 | 47 49 | eqeq12d | |- ( w = y -> ( ( z .\/ ( x ./\ w ) ) = ( ( z .\/ x ) ./\ ( z .\/ w ) ) <-> ( z .\/ ( x ./\ y ) ) = ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 51 | 41 45 50 | rspc3v | |- ( ( z e. B /\ x e. B /\ y e. B ) -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> ( z .\/ ( x ./\ y ) ) = ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 52 | 7 6 36 51 | syl3anc | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> ( z .\/ ( x ./\ y ) ) = ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 53 | 52 | imp | |- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( z .\/ ( x ./\ y ) ) = ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) |
| 54 | 53 | oveq2d | |- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( x ./\ ( z .\/ ( x ./\ y ) ) ) = ( x ./\ ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 55 | 1 2 | latjcl | |- ( ( K e. Lat /\ z e. B /\ x e. B ) -> ( z .\/ x ) e. B ) |
| 56 | 26 7 6 55 | syl3anc | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( z .\/ x ) e. B ) |
| 57 | 1 2 | latjcl | |- ( ( K e. Lat /\ z e. B /\ y e. B ) -> ( z .\/ y ) e. B ) |
| 58 | 26 7 36 57 | syl3anc | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( z .\/ y ) e. B ) |
| 59 | 1 3 | latmass | |- ( ( K e. Lat /\ ( x e. B /\ ( z .\/ x ) e. B /\ ( z .\/ y ) e. B ) ) -> ( ( x ./\ ( z .\/ x ) ) ./\ ( z .\/ y ) ) = ( x ./\ ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 60 | 26 6 56 58 59 | syl13anc | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ./\ ( z .\/ x ) ) ./\ ( z .\/ y ) ) = ( x ./\ ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 61 | 1 2 | latjcom | |- ( ( K e. Lat /\ z e. B /\ x e. B ) -> ( z .\/ x ) = ( x .\/ z ) ) |
| 62 | 26 7 6 61 | syl3anc | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( z .\/ x ) = ( x .\/ z ) ) |
| 63 | 62 | oveq2d | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ ( z .\/ x ) ) = ( x ./\ ( x .\/ z ) ) ) |
| 64 | 1 2 3 | latabs2 | |- ( ( K e. Lat /\ x e. B /\ z e. B ) -> ( x ./\ ( x .\/ z ) ) = x ) |
| 65 | 26 6 7 64 | syl3anc | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ ( x .\/ z ) ) = x ) |
| 66 | 63 65 | eqtrd | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ ( z .\/ x ) ) = x ) |
| 67 | 1 2 | latjcom | |- ( ( K e. Lat /\ z e. B /\ y e. B ) -> ( z .\/ y ) = ( y .\/ z ) ) |
| 68 | 26 7 36 67 | syl3anc | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( z .\/ y ) = ( y .\/ z ) ) |
| 69 | 66 68 | oveq12d | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ./\ ( z .\/ x ) ) ./\ ( z .\/ y ) ) = ( x ./\ ( y .\/ z ) ) ) |
| 70 | 60 69 | eqtr3d | |- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) = ( x ./\ ( y .\/ z ) ) ) |
| 71 | 70 | adantr | |- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( x ./\ ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) = ( x ./\ ( y .\/ z ) ) ) |
| 72 | 54 71 | eqtrd | |- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( x ./\ ( z .\/ ( x ./\ y ) ) ) = ( x ./\ ( y .\/ z ) ) ) |
| 73 | 25 35 72 | 3eqtrrd | |- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 74 | 73 | an32s | |- ( ( ( K e. Lat /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 75 | 74 | ralrimivvva | |- ( ( K e. Lat /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 76 | 75 | ex | |- ( K e. Lat -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) ) |