This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lattice absorption law. From definition of lattice in Kalmbach p. 14. ( chabs1 analog.) (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latabs1.b | |- B = ( Base ` K ) |
|
| latabs1.j | |- .\/ = ( join ` K ) |
||
| latabs1.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latabs1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ ( X ./\ Y ) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latabs1.b | |- B = ( Base ` K ) |
|
| 2 | latabs1.j | |- .\/ = ( join ` K ) |
|
| 3 | latabs1.m | |- ./\ = ( meet ` K ) |
|
| 4 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 5 | 1 4 3 | latmle1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) ( le ` K ) X ) |
| 6 | 1 3 | latmcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| 7 | 1 4 2 | latleeqj2 | |- ( ( K e. Lat /\ ( X ./\ Y ) e. B /\ X e. B ) -> ( ( X ./\ Y ) ( le ` K ) X <-> ( X .\/ ( X ./\ Y ) ) = X ) ) |
| 8 | 7 | 3com23 | |- ( ( K e. Lat /\ X e. B /\ ( X ./\ Y ) e. B ) -> ( ( X ./\ Y ) ( le ` K ) X <-> ( X .\/ ( X ./\ Y ) ) = X ) ) |
| 9 | 6 8 | syld3an3 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) ( le ` K ) X <-> ( X .\/ ( X ./\ Y ) ) = X ) ) |
| 10 | 5 9 | mpbid | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ ( X ./\ Y ) ) = X ) |