This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lattice meet is associative. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmass.b | |- B = ( Base ` K ) |
|
| latmass.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latmass | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) ./\ Z ) = ( X ./\ ( Y ./\ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmass.b | |- B = ( Base ` K ) |
|
| 2 | latmass.m | |- ./\ = ( meet ` K ) |
|
| 3 | eqid | |- ( ODual ` K ) = ( ODual ` K ) |
|
| 4 | 3 | odulat | |- ( K e. Lat -> ( ODual ` K ) e. Lat ) |
| 5 | 3 1 | odubas | |- B = ( Base ` ( ODual ` K ) ) |
| 6 | 3 2 | odujoin | |- ./\ = ( join ` ( ODual ` K ) ) |
| 7 | 5 6 | latjass | |- ( ( ( ODual ` K ) e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) ./\ Z ) = ( X ./\ ( Y ./\ Z ) ) ) |
| 8 | 4 7 | sylan | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) ./\ Z ) = ( X ./\ ( Y ./\ Z ) ) ) |