This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc3v.1 | |- ( x = A -> ( ph <-> ch ) ) |
|
| rspc3v.2 | |- ( y = B -> ( ch <-> th ) ) |
||
| rspc3v.3 | |- ( z = C -> ( th <-> ps ) ) |
||
| Assertion | rspc3v | |- ( ( A e. R /\ B e. S /\ C e. T ) -> ( A. x e. R A. y e. S A. z e. T ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc3v.1 | |- ( x = A -> ( ph <-> ch ) ) |
|
| 2 | rspc3v.2 | |- ( y = B -> ( ch <-> th ) ) |
|
| 3 | rspc3v.3 | |- ( z = C -> ( th <-> ps ) ) |
|
| 4 | 1 | ralbidv | |- ( x = A -> ( A. z e. T ph <-> A. z e. T ch ) ) |
| 5 | 2 | ralbidv | |- ( y = B -> ( A. z e. T ch <-> A. z e. T th ) ) |
| 6 | 4 5 | rspc2v | |- ( ( A e. R /\ B e. S ) -> ( A. x e. R A. y e. S A. z e. T ph -> A. z e. T th ) ) |
| 7 | 3 | rspcv | |- ( C e. T -> ( A. z e. T th -> ps ) ) |
| 8 | 6 7 | sylan9 | |- ( ( ( A e. R /\ B e. S ) /\ C e. T ) -> ( A. x e. R A. y e. S A. z e. T ph -> ps ) ) |
| 9 | 8 | 3impa | |- ( ( A e. R /\ B e. S /\ C e. T ) -> ( A. x e. R A. y e. S A. z e. T ph -> ps ) ) |