This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of a lattice commutes. ( chjcom analog.) (Contributed by NM, 16-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjcom.b | |- B = ( Base ` K ) |
|
| latjcom.j | |- .\/ = ( join ` K ) |
||
| Assertion | latjcom | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjcom.b | |- B = ( Base ` K ) |
|
| 2 | latjcom.j | |- .\/ = ( join ` K ) |
|
| 3 | opelxpi | |- ( ( X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) |
|
| 4 | 3 | 3adant1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) |
| 5 | eqid | |- ( meet ` K ) = ( meet ` K ) |
|
| 6 | 1 2 5 | islat | |- ( K e. Lat <-> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ( meet ` K ) = ( B X. B ) ) ) ) |
| 7 | simprl | |- ( ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ( meet ` K ) = ( B X. B ) ) ) -> dom .\/ = ( B X. B ) ) |
|
| 8 | 6 7 | sylbi | |- ( K e. Lat -> dom .\/ = ( B X. B ) ) |
| 9 | 8 | 3ad2ant1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> dom .\/ = ( B X. B ) ) |
| 10 | 4 9 | eleqtrrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. dom .\/ ) |
| 11 | opelxpi | |- ( ( Y e. B /\ X e. B ) -> <. Y , X >. e. ( B X. B ) ) |
|
| 12 | 11 | ancoms | |- ( ( X e. B /\ Y e. B ) -> <. Y , X >. e. ( B X. B ) ) |
| 13 | 12 | 3adant1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. Y , X >. e. ( B X. B ) ) |
| 14 | 13 9 | eleqtrrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. Y , X >. e. dom .\/ ) |
| 15 | 10 14 | jca | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) |
| 16 | latpos | |- ( K e. Lat -> K e. Poset ) |
|
| 17 | 1 2 | joincom | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| 18 | 16 17 | syl3anl1 | |- ( ( ( K e. Lat /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| 19 | 15 18 | mpdan | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |