This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lattice absorption law. From definition of lattice in Kalmbach p. 14. ( chabs2 analog.) (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latabs1.b | |- B = ( Base ` K ) |
|
| latabs1.j | |- .\/ = ( join ` K ) |
||
| latabs1.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latabs2 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ ( X .\/ Y ) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latabs1.b | |- B = ( Base ` K ) |
|
| 2 | latabs1.j | |- .\/ = ( join ` K ) |
|
| 3 | latabs1.m | |- ./\ = ( meet ` K ) |
|
| 4 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 5 | 1 4 2 | latlej1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X ( le ` K ) ( X .\/ Y ) ) |
| 6 | 1 2 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
| 7 | 1 4 3 | latleeqm1 | |- ( ( K e. Lat /\ X e. B /\ ( X .\/ Y ) e. B ) -> ( X ( le ` K ) ( X .\/ Y ) <-> ( X ./\ ( X .\/ Y ) ) = X ) ) |
| 8 | 6 7 | syld3an3 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ( le ` K ) ( X .\/ Y ) <-> ( X ./\ ( X .\/ Y ) ) = X ) ) |
| 9 | 5 8 | mpbid | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ ( X .\/ Y ) ) = X ) |