This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latdisd.b | |- B = ( Base ` K ) |
|
| latdisd.j | |- .\/ = ( join ` K ) |
||
| latdisd.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latdisd | |- ( K e. Lat -> ( A. x e. B A. y e. B A. z e. B ( x .\/ ( y ./\ z ) ) = ( ( x .\/ y ) ./\ ( x .\/ z ) ) <-> A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latdisd.b | |- B = ( Base ` K ) |
|
| 2 | latdisd.j | |- .\/ = ( join ` K ) |
|
| 3 | latdisd.m | |- ./\ = ( meet ` K ) |
|
| 4 | 1 2 3 | latdisdlem | |- ( K e. Lat -> ( A. x e. B A. y e. B A. z e. B ( x .\/ ( y ./\ z ) ) = ( ( x .\/ y ) ./\ ( x .\/ z ) ) -> A. u e. B A. v e. B A. w e. B ( u ./\ ( v .\/ w ) ) = ( ( u ./\ v ) .\/ ( u ./\ w ) ) ) ) |
| 5 | eqid | |- ( ODual ` K ) = ( ODual ` K ) |
|
| 6 | 5 | odulat | |- ( K e. Lat -> ( ODual ` K ) e. Lat ) |
| 7 | 5 1 | odubas | |- B = ( Base ` ( ODual ` K ) ) |
| 8 | 5 3 | odujoin | |- ./\ = ( join ` ( ODual ` K ) ) |
| 9 | 5 2 | odumeet | |- .\/ = ( meet ` ( ODual ` K ) ) |
| 10 | 7 8 9 | latdisdlem | |- ( ( ODual ` K ) e. Lat -> ( A. u e. B A. v e. B A. w e. B ( u ./\ ( v .\/ w ) ) = ( ( u ./\ v ) .\/ ( u ./\ w ) ) -> A. x e. B A. y e. B A. z e. B ( x .\/ ( y ./\ z ) ) = ( ( x .\/ y ) ./\ ( x .\/ z ) ) ) ) |
| 11 | 6 10 | syl | |- ( K e. Lat -> ( A. u e. B A. v e. B A. w e. B ( u ./\ ( v .\/ w ) ) = ( ( u ./\ v ) .\/ ( u ./\ w ) ) -> A. x e. B A. y e. B A. z e. B ( x .\/ ( y ./\ z ) ) = ( ( x .\/ y ) ./\ ( x .\/ z ) ) ) ) |
| 12 | 4 11 | impbid | |- ( K e. Lat -> ( A. x e. B A. y e. B A. z e. B ( x .\/ ( y ./\ z ) ) = ( ( x .\/ y ) ./\ ( x .\/ z ) ) <-> A. u e. B A. v e. B A. w e. B ( u ./\ ( v .\/ w ) ) = ( ( u ./\ v ) .\/ ( u ./\ w ) ) ) ) |
| 13 | oveq1 | |- ( u = x -> ( u ./\ ( v .\/ w ) ) = ( x ./\ ( v .\/ w ) ) ) |
|
| 14 | oveq1 | |- ( u = x -> ( u ./\ v ) = ( x ./\ v ) ) |
|
| 15 | oveq1 | |- ( u = x -> ( u ./\ w ) = ( x ./\ w ) ) |
|
| 16 | 14 15 | oveq12d | |- ( u = x -> ( ( u ./\ v ) .\/ ( u ./\ w ) ) = ( ( x ./\ v ) .\/ ( x ./\ w ) ) ) |
| 17 | 13 16 | eqeq12d | |- ( u = x -> ( ( u ./\ ( v .\/ w ) ) = ( ( u ./\ v ) .\/ ( u ./\ w ) ) <-> ( x ./\ ( v .\/ w ) ) = ( ( x ./\ v ) .\/ ( x ./\ w ) ) ) ) |
| 18 | oveq1 | |- ( v = y -> ( v .\/ w ) = ( y .\/ w ) ) |
|
| 19 | 18 | oveq2d | |- ( v = y -> ( x ./\ ( v .\/ w ) ) = ( x ./\ ( y .\/ w ) ) ) |
| 20 | oveq2 | |- ( v = y -> ( x ./\ v ) = ( x ./\ y ) ) |
|
| 21 | 20 | oveq1d | |- ( v = y -> ( ( x ./\ v ) .\/ ( x ./\ w ) ) = ( ( x ./\ y ) .\/ ( x ./\ w ) ) ) |
| 22 | 19 21 | eqeq12d | |- ( v = y -> ( ( x ./\ ( v .\/ w ) ) = ( ( x ./\ v ) .\/ ( x ./\ w ) ) <-> ( x ./\ ( y .\/ w ) ) = ( ( x ./\ y ) .\/ ( x ./\ w ) ) ) ) |
| 23 | oveq2 | |- ( w = z -> ( y .\/ w ) = ( y .\/ z ) ) |
|
| 24 | 23 | oveq2d | |- ( w = z -> ( x ./\ ( y .\/ w ) ) = ( x ./\ ( y .\/ z ) ) ) |
| 25 | oveq2 | |- ( w = z -> ( x ./\ w ) = ( x ./\ z ) ) |
|
| 26 | 25 | oveq2d | |- ( w = z -> ( ( x ./\ y ) .\/ ( x ./\ w ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 27 | 24 26 | eqeq12d | |- ( w = z -> ( ( x ./\ ( y .\/ w ) ) = ( ( x ./\ y ) .\/ ( x ./\ w ) ) <-> ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) ) |
| 28 | 17 22 27 | cbvral3vw | |- ( A. u e. B A. v e. B A. w e. B ( u ./\ ( v .\/ w ) ) = ( ( u ./\ v ) .\/ ( u ./\ w ) ) <-> A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 29 | 12 28 | bitrdi | |- ( K e. Lat -> ( A. x e. B A. y e. B A. z e. B ( x .\/ ( y ./\ z ) ) = ( ( x .\/ y ) ./\ ( x .\/ z ) ) <-> A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) ) |