This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for latdisd . (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latdisd.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latdisd.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| latdisd.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latdisdlem | ⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latdisd.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latdisd.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | latdisd.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | 1 3 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∧ 𝑦 ) ∈ 𝐵 ) |
| 5 | 4 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∧ 𝑦 ) ∈ 𝐵 ) |
| 6 | simpr1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 7 | simpr3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) | |
| 8 | oveq1 | ⊢ ( 𝑢 = ( 𝑥 ∧ 𝑦 ) → ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑣 ∧ 𝑤 ) ) ) | |
| 9 | oveq1 | ⊢ ( 𝑢 = ( 𝑥 ∧ 𝑦 ) → ( 𝑢 ∨ 𝑣 ) = ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑣 ) ) | |
| 10 | oveq1 | ⊢ ( 𝑢 = ( 𝑥 ∧ 𝑦 ) → ( 𝑢 ∨ 𝑤 ) = ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑤 ) ) | |
| 11 | 9 10 | oveq12d | ⊢ ( 𝑢 = ( 𝑥 ∧ 𝑦 ) → ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑣 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑤 ) ) ) |
| 12 | 8 11 | eqeq12d | ⊢ ( 𝑢 = ( 𝑥 ∧ 𝑦 ) → ( ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ↔ ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑣 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑤 ) ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑣 = 𝑥 → ( 𝑣 ∧ 𝑤 ) = ( 𝑥 ∧ 𝑤 ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑣 = 𝑥 → ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑤 ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑣 = 𝑥 → ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑣 ) = ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ) | |
| 16 | 15 | oveq1d | ⊢ ( 𝑣 = 𝑥 → ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑣 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑤 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑤 ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑣 = 𝑥 → ( ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑣 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑤 ) ) ↔ ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑤 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑤 ) ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑥 ∧ 𝑤 ) = ( 𝑥 ∧ 𝑧 ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑤 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑤 ) = ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑧 ) ) | |
| 21 | 20 | oveq2d | ⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑤 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑧 ) ) ) |
| 22 | 19 21 | eqeq12d | ⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑤 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑤 ) ) ↔ ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑧 ) ) ) ) |
| 23 | 12 17 22 | rspc3v | ⊢ ( ( ( 𝑥 ∧ 𝑦 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) → ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑧 ) ) ) ) |
| 24 | 5 6 7 23 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) → ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑧 ) ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ) → ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) = ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑧 ) ) ) |
| 26 | simpl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) | |
| 27 | 1 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∧ 𝑦 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) = ( 𝑥 ∨ ( 𝑥 ∧ 𝑦 ) ) ) |
| 28 | 26 5 6 27 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) = ( 𝑥 ∨ ( 𝑥 ∧ 𝑦 ) ) ) |
| 29 | 1 2 3 | latabs1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∨ ( 𝑥 ∧ 𝑦 ) ) = 𝑥 ) |
| 30 | 29 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∨ ( 𝑥 ∧ 𝑦 ) ) = 𝑥 ) |
| 31 | 28 30 | eqtrd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) = 𝑥 ) |
| 32 | 1 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∧ 𝑦 ) ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑧 ) = ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) ) |
| 33 | 26 5 7 32 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑧 ) = ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) ) |
| 34 | 31 33 | oveq12d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑧 ) ) = ( 𝑥 ∧ ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ) → ( ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑥 ) ∧ ( ( 𝑥 ∧ 𝑦 ) ∨ 𝑧 ) ) = ( 𝑥 ∧ ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) ) ) |
| 36 | simpr2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 37 | oveq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( 𝑧 ∨ ( 𝑣 ∧ 𝑤 ) ) ) | |
| 38 | oveq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∨ 𝑣 ) = ( 𝑧 ∨ 𝑣 ) ) | |
| 39 | oveq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∨ 𝑤 ) = ( 𝑧 ∨ 𝑤 ) ) | |
| 40 | 38 39 | oveq12d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) = ( ( 𝑧 ∨ 𝑣 ) ∧ ( 𝑧 ∨ 𝑤 ) ) ) |
| 41 | 37 40 | eqeq12d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ↔ ( 𝑧 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑧 ∨ 𝑣 ) ∧ ( 𝑧 ∨ 𝑤 ) ) ) ) |
| 42 | 13 | oveq2d | ⊢ ( 𝑣 = 𝑥 → ( 𝑧 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( 𝑧 ∨ ( 𝑥 ∧ 𝑤 ) ) ) |
| 43 | oveq2 | ⊢ ( 𝑣 = 𝑥 → ( 𝑧 ∨ 𝑣 ) = ( 𝑧 ∨ 𝑥 ) ) | |
| 44 | 43 | oveq1d | ⊢ ( 𝑣 = 𝑥 → ( ( 𝑧 ∨ 𝑣 ) ∧ ( 𝑧 ∨ 𝑤 ) ) = ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑤 ) ) ) |
| 45 | 42 44 | eqeq12d | ⊢ ( 𝑣 = 𝑥 → ( ( 𝑧 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑧 ∨ 𝑣 ) ∧ ( 𝑧 ∨ 𝑤 ) ) ↔ ( 𝑧 ∨ ( 𝑥 ∧ 𝑤 ) ) = ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑤 ) ) ) ) |
| 46 | oveq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∧ 𝑤 ) = ( 𝑥 ∧ 𝑦 ) ) | |
| 47 | 46 | oveq2d | ⊢ ( 𝑤 = 𝑦 → ( 𝑧 ∨ ( 𝑥 ∧ 𝑤 ) ) = ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) ) |
| 48 | oveq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑧 ∨ 𝑤 ) = ( 𝑧 ∨ 𝑦 ) ) | |
| 49 | 48 | oveq2d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑤 ) ) = ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑦 ) ) ) |
| 50 | 47 49 | eqeq12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑧 ∨ ( 𝑥 ∧ 𝑤 ) ) = ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑤 ) ) ↔ ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) = ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑦 ) ) ) ) |
| 51 | 41 45 50 | rspc3v | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) → ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) = ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑦 ) ) ) ) |
| 52 | 7 6 36 51 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) → ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) = ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑦 ) ) ) ) |
| 53 | 52 | imp | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ) → ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) = ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑦 ) ) ) |
| 54 | 53 | oveq2d | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ) → ( 𝑥 ∧ ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) ) = ( 𝑥 ∧ ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑦 ) ) ) ) |
| 55 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑧 ∨ 𝑥 ) ∈ 𝐵 ) |
| 56 | 26 7 6 55 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑧 ∨ 𝑥 ) ∈ 𝐵 ) |
| 57 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∨ 𝑦 ) ∈ 𝐵 ) |
| 58 | 26 7 36 57 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑧 ∨ 𝑦 ) ∈ 𝐵 ) |
| 59 | 1 3 | latmass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑧 ∨ 𝑥 ) ∈ 𝐵 ∧ ( 𝑧 ∨ 𝑦 ) ∈ 𝐵 ) ) → ( ( 𝑥 ∧ ( 𝑧 ∨ 𝑥 ) ) ∧ ( 𝑧 ∨ 𝑦 ) ) = ( 𝑥 ∧ ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑦 ) ) ) ) |
| 60 | 26 6 56 58 59 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∧ ( 𝑧 ∨ 𝑥 ) ) ∧ ( 𝑧 ∨ 𝑦 ) ) = ( 𝑥 ∧ ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑦 ) ) ) ) |
| 61 | 1 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑧 ∨ 𝑥 ) = ( 𝑥 ∨ 𝑧 ) ) |
| 62 | 26 7 6 61 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑧 ∨ 𝑥 ) = ( 𝑥 ∨ 𝑧 ) ) |
| 63 | 62 | oveq2d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∧ ( 𝑧 ∨ 𝑥 ) ) = ( 𝑥 ∧ ( 𝑥 ∨ 𝑧 ) ) ) |
| 64 | 1 2 3 | latabs2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ∧ ( 𝑥 ∨ 𝑧 ) ) = 𝑥 ) |
| 65 | 26 6 7 64 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∧ ( 𝑥 ∨ 𝑧 ) ) = 𝑥 ) |
| 66 | 63 65 | eqtrd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∧ ( 𝑧 ∨ 𝑥 ) ) = 𝑥 ) |
| 67 | 1 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∨ 𝑦 ) = ( 𝑦 ∨ 𝑧 ) ) |
| 68 | 26 7 36 67 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑧 ∨ 𝑦 ) = ( 𝑦 ∨ 𝑧 ) ) |
| 69 | 66 68 | oveq12d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∧ ( 𝑧 ∨ 𝑥 ) ) ∧ ( 𝑧 ∨ 𝑦 ) ) = ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) ) |
| 70 | 60 69 | eqtr3d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∧ ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑦 ) ) ) = ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ) → ( 𝑥 ∧ ( ( 𝑧 ∨ 𝑥 ) ∧ ( 𝑧 ∨ 𝑦 ) ) ) = ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) ) |
| 72 | 54 71 | eqtrd | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ) → ( 𝑥 ∧ ( 𝑧 ∨ ( 𝑥 ∧ 𝑦 ) ) ) = ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) ) |
| 73 | 25 35 72 | 3eqtrrd | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ) → ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 74 | 73 | an32s | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 75 | 74 | ralrimivvva | ⊢ ( ( 𝐾 ∈ Lat ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 76 | 75 | ex | ⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∨ ( 𝑣 ∧ 𝑤 ) ) = ( ( 𝑢 ∨ 𝑣 ) ∧ ( 𝑢 ∨ 𝑤 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |