This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1fi | |- ( ( B e. Fin /\ F : A -1-1-> B ) -> A e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 2 | 1 | frnd | |- ( F : A -1-1-> B -> ran F C_ B ) |
| 3 | ssfi | |- ( ( B e. Fin /\ ran F C_ B ) -> ran F e. Fin ) |
|
| 4 | 2 3 | sylan2 | |- ( ( B e. Fin /\ F : A -1-1-> B ) -> ran F e. Fin ) |
| 5 | f1f1orn | |- ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) |
|
| 6 | 5 | adantl | |- ( ( B e. Fin /\ F : A -1-1-> B ) -> F : A -1-1-onto-> ran F ) |
| 7 | f1ocnv | |- ( F : A -1-1-onto-> ran F -> `' F : ran F -1-1-onto-> A ) |
|
| 8 | f1ofo | |- ( `' F : ran F -1-1-onto-> A -> `' F : ran F -onto-> A ) |
|
| 9 | 6 7 8 | 3syl | |- ( ( B e. Fin /\ F : A -1-1-> B ) -> `' F : ran F -onto-> A ) |
| 10 | fofi | |- ( ( ran F e. Fin /\ `' F : ran F -onto-> A ) -> A e. Fin ) |
|
| 11 | 4 9 10 | syl2anc | |- ( ( B e. Fin /\ F : A -1-1-> B ) -> A e. Fin ) |