This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mptfi | |- ( A e. Fin -> ( x e. A |-> B ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt | |- Fun ( x e. A |-> B ) |
|
| 2 | funfn | |- ( Fun ( x e. A |-> B ) <-> ( x e. A |-> B ) Fn dom ( x e. A |-> B ) ) |
|
| 3 | 1 2 | mpbi | |- ( x e. A |-> B ) Fn dom ( x e. A |-> B ) |
| 4 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 5 | 4 | dmmptss | |- dom ( x e. A |-> B ) C_ A |
| 6 | ssfi | |- ( ( A e. Fin /\ dom ( x e. A |-> B ) C_ A ) -> dom ( x e. A |-> B ) e. Fin ) |
|
| 7 | 5 6 | mpan2 | |- ( A e. Fin -> dom ( x e. A |-> B ) e. Fin ) |
| 8 | fnfi | |- ( ( ( x e. A |-> B ) Fn dom ( x e. A |-> B ) /\ dom ( x e. A |-> B ) e. Fin ) -> ( x e. A |-> B ) e. Fin ) |
|
| 9 | 3 7 8 | sylancr | |- ( A e. Fin -> ( x e. A |-> B ) e. Fin ) |