This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The S. integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsplitioo.1 | |- ( ph -> A e. RR ) |
|
| itgsplitioo.2 | |- ( ph -> C e. RR ) |
||
| itgsplitioo.3 | |- ( ph -> B e. ( A [,] C ) ) |
||
| itgsplitioo.4 | |- ( ( ph /\ x e. ( A (,) C ) ) -> D e. CC ) |
||
| itgsplitioo.5 | |- ( ph -> ( x e. ( A (,) B ) |-> D ) e. L^1 ) |
||
| itgsplitioo.6 | |- ( ph -> ( x e. ( B (,) C ) |-> D ) e. L^1 ) |
||
| Assertion | itgsplitioo | |- ( ph -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsplitioo.1 | |- ( ph -> A e. RR ) |
|
| 2 | itgsplitioo.2 | |- ( ph -> C e. RR ) |
|
| 3 | itgsplitioo.3 | |- ( ph -> B e. ( A [,] C ) ) |
|
| 4 | itgsplitioo.4 | |- ( ( ph /\ x e. ( A (,) C ) ) -> D e. CC ) |
|
| 5 | itgsplitioo.5 | |- ( ph -> ( x e. ( A (,) B ) |-> D ) e. L^1 ) |
|
| 6 | itgsplitioo.6 | |- ( ph -> ( x e. ( B (,) C ) |-> D ) e. L^1 ) |
|
| 7 | elicc2 | |- ( ( A e. RR /\ C e. RR ) -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) |
|
| 8 | 1 2 7 | syl2anc | |- ( ph -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) |
| 9 | 3 8 | mpbid | |- ( ph -> ( B e. RR /\ A <_ B /\ B <_ C ) ) |
| 10 | 9 | simp2d | |- ( ph -> A <_ B ) |
| 11 | 9 | simp1d | |- ( ph -> B e. RR ) |
| 12 | 1 11 | leloed | |- ( ph -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
| 13 | 10 12 | mpbid | |- ( ph -> ( A < B \/ A = B ) ) |
| 14 | 13 | ord | |- ( ph -> ( -. A < B -> A = B ) ) |
| 15 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 16 | iooss1 | |- ( ( A e. RR* /\ A <_ B ) -> ( B (,) C ) C_ ( A (,) C ) ) |
|
| 17 | 15 10 16 | syl2anc | |- ( ph -> ( B (,) C ) C_ ( A (,) C ) ) |
| 18 | 17 | sselda | |- ( ( ph /\ x e. ( B (,) C ) ) -> x e. ( A (,) C ) ) |
| 19 | 18 4 | syldan | |- ( ( ph /\ x e. ( B (,) C ) ) -> D e. CC ) |
| 20 | 19 6 | itgcl | |- ( ph -> S. ( B (,) C ) D _d x e. CC ) |
| 21 | 20 | addlidd | |- ( ph -> ( 0 + S. ( B (,) C ) D _d x ) = S. ( B (,) C ) D _d x ) |
| 22 | 21 | eqcomd | |- ( ph -> S. ( B (,) C ) D _d x = ( 0 + S. ( B (,) C ) D _d x ) ) |
| 23 | oveq1 | |- ( A = B -> ( A (,) C ) = ( B (,) C ) ) |
|
| 24 | itgeq1 | |- ( ( A (,) C ) = ( B (,) C ) -> S. ( A (,) C ) D _d x = S. ( B (,) C ) D _d x ) |
|
| 25 | 23 24 | syl | |- ( A = B -> S. ( A (,) C ) D _d x = S. ( B (,) C ) D _d x ) |
| 26 | oveq1 | |- ( A = B -> ( A (,) B ) = ( B (,) B ) ) |
|
| 27 | iooid | |- ( B (,) B ) = (/) |
|
| 28 | 26 27 | eqtrdi | |- ( A = B -> ( A (,) B ) = (/) ) |
| 29 | itgeq1 | |- ( ( A (,) B ) = (/) -> S. ( A (,) B ) D _d x = S. (/) D _d x ) |
|
| 30 | 28 29 | syl | |- ( A = B -> S. ( A (,) B ) D _d x = S. (/) D _d x ) |
| 31 | itg0 | |- S. (/) D _d x = 0 |
|
| 32 | 30 31 | eqtrdi | |- ( A = B -> S. ( A (,) B ) D _d x = 0 ) |
| 33 | 32 | oveq1d | |- ( A = B -> ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) = ( 0 + S. ( B (,) C ) D _d x ) ) |
| 34 | 25 33 | eqeq12d | |- ( A = B -> ( S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) <-> S. ( B (,) C ) D _d x = ( 0 + S. ( B (,) C ) D _d x ) ) ) |
| 35 | 22 34 | syl5ibrcom | |- ( ph -> ( A = B -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) |
| 36 | 14 35 | syld | |- ( ph -> ( -. A < B -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) |
| 37 | 9 | simp3d | |- ( ph -> B <_ C ) |
| 38 | 11 2 | leloed | |- ( ph -> ( B <_ C <-> ( B < C \/ B = C ) ) ) |
| 39 | 37 38 | mpbid | |- ( ph -> ( B < C \/ B = C ) ) |
| 40 | 39 | ord | |- ( ph -> ( -. B < C -> B = C ) ) |
| 41 | 2 | rexrd | |- ( ph -> C e. RR* ) |
| 42 | iooss2 | |- ( ( C e. RR* /\ B <_ C ) -> ( A (,) B ) C_ ( A (,) C ) ) |
|
| 43 | 41 37 42 | syl2anc | |- ( ph -> ( A (,) B ) C_ ( A (,) C ) ) |
| 44 | 43 | sselda | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) C ) ) |
| 45 | 44 4 | syldan | |- ( ( ph /\ x e. ( A (,) B ) ) -> D e. CC ) |
| 46 | 45 5 | itgcl | |- ( ph -> S. ( A (,) B ) D _d x e. CC ) |
| 47 | 46 | addridd | |- ( ph -> ( S. ( A (,) B ) D _d x + 0 ) = S. ( A (,) B ) D _d x ) |
| 48 | 47 | eqcomd | |- ( ph -> S. ( A (,) B ) D _d x = ( S. ( A (,) B ) D _d x + 0 ) ) |
| 49 | oveq2 | |- ( B = C -> ( A (,) B ) = ( A (,) C ) ) |
|
| 50 | itgeq1 | |- ( ( A (,) B ) = ( A (,) C ) -> S. ( A (,) B ) D _d x = S. ( A (,) C ) D _d x ) |
|
| 51 | 49 50 | syl | |- ( B = C -> S. ( A (,) B ) D _d x = S. ( A (,) C ) D _d x ) |
| 52 | oveq2 | |- ( B = C -> ( B (,) B ) = ( B (,) C ) ) |
|
| 53 | 27 52 | eqtr3id | |- ( B = C -> (/) = ( B (,) C ) ) |
| 54 | itgeq1 | |- ( (/) = ( B (,) C ) -> S. (/) D _d x = S. ( B (,) C ) D _d x ) |
|
| 55 | 53 54 | syl | |- ( B = C -> S. (/) D _d x = S. ( B (,) C ) D _d x ) |
| 56 | 31 55 | eqtr3id | |- ( B = C -> 0 = S. ( B (,) C ) D _d x ) |
| 57 | 56 | oveq2d | |- ( B = C -> ( S. ( A (,) B ) D _d x + 0 ) = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) |
| 58 | 51 57 | eqeq12d | |- ( B = C -> ( S. ( A (,) B ) D _d x = ( S. ( A (,) B ) D _d x + 0 ) <-> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) |
| 59 | 48 58 | syl5ibcom | |- ( ph -> ( B = C -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) |
| 60 | 40 59 | syld | |- ( ph -> ( -. B < C -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) |
| 61 | indir | |- ( ( ( A (,) B ) u. { B } ) i^i ( B (,) C ) ) = ( ( ( A (,) B ) i^i ( B (,) C ) ) u. ( { B } i^i ( B (,) C ) ) ) |
|
| 62 | 11 | rexrd | |- ( ph -> B e. RR* ) |
| 63 | 15 62 | jca | |- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
| 64 | 63 | adantr | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( A e. RR* /\ B e. RR* ) ) |
| 65 | 62 41 | jca | |- ( ph -> ( B e. RR* /\ C e. RR* ) ) |
| 66 | 65 | adantr | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( B e. RR* /\ C e. RR* ) ) |
| 67 | 11 | adantr | |- ( ( ph /\ ( A < B /\ B < C ) ) -> B e. RR ) |
| 68 | 67 | leidd | |- ( ( ph /\ ( A < B /\ B < C ) ) -> B <_ B ) |
| 69 | ioodisj | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( B e. RR* /\ C e. RR* ) ) /\ B <_ B ) -> ( ( A (,) B ) i^i ( B (,) C ) ) = (/) ) |
|
| 70 | 64 66 68 69 | syl21anc | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( A (,) B ) i^i ( B (,) C ) ) = (/) ) |
| 71 | incom | |- ( { B } i^i ( B (,) C ) ) = ( ( B (,) C ) i^i { B } ) |
|
| 72 | 67 | ltnrd | |- ( ( ph /\ ( A < B /\ B < C ) ) -> -. B < B ) |
| 73 | eliooord | |- ( B e. ( B (,) C ) -> ( B < B /\ B < C ) ) |
|
| 74 | 73 | simpld | |- ( B e. ( B (,) C ) -> B < B ) |
| 75 | 72 74 | nsyl | |- ( ( ph /\ ( A < B /\ B < C ) ) -> -. B e. ( B (,) C ) ) |
| 76 | disjsn | |- ( ( ( B (,) C ) i^i { B } ) = (/) <-> -. B e. ( B (,) C ) ) |
|
| 77 | 75 76 | sylibr | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( B (,) C ) i^i { B } ) = (/) ) |
| 78 | 71 77 | eqtrid | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( { B } i^i ( B (,) C ) ) = (/) ) |
| 79 | 70 78 | uneq12d | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) i^i ( B (,) C ) ) u. ( { B } i^i ( B (,) C ) ) ) = ( (/) u. (/) ) ) |
| 80 | un0 | |- ( (/) u. (/) ) = (/) |
|
| 81 | 79 80 | eqtrdi | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) i^i ( B (,) C ) ) u. ( { B } i^i ( B (,) C ) ) ) = (/) ) |
| 82 | 61 81 | eqtrid | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) u. { B } ) i^i ( B (,) C ) ) = (/) ) |
| 83 | 82 | fveq2d | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( vol* ` ( ( ( A (,) B ) u. { B } ) i^i ( B (,) C ) ) ) = ( vol* ` (/) ) ) |
| 84 | ovol0 | |- ( vol* ` (/) ) = 0 |
|
| 85 | 83 84 | eqtrdi | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( vol* ` ( ( ( A (,) B ) u. { B } ) i^i ( B (,) C ) ) ) = 0 ) |
| 86 | 15 62 41 | 3jca | |- ( ph -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) |
| 87 | ioojoin | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) = ( A (,) C ) ) |
|
| 88 | 86 87 | sylan | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) = ( A (,) C ) ) |
| 89 | 88 | eqcomd | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( A (,) C ) = ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) ) |
| 90 | 4 | adantlr | |- ( ( ( ph /\ ( A < B /\ B < C ) ) /\ x e. ( A (,) C ) ) -> D e. CC ) |
| 91 | 5 | adantr | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( x e. ( A (,) B ) |-> D ) e. L^1 ) |
| 92 | ssun1 | |- ( A (,) B ) C_ ( ( A (,) B ) u. { B } ) |
|
| 93 | 92 | a1i | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( A (,) B ) C_ ( ( A (,) B ) u. { B } ) ) |
| 94 | ioossre | |- ( A (,) B ) C_ RR |
|
| 95 | 94 | a1i | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( A (,) B ) C_ RR ) |
| 96 | 67 | snssd | |- ( ( ph /\ ( A < B /\ B < C ) ) -> { B } C_ RR ) |
| 97 | 95 96 | unssd | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( A (,) B ) u. { B } ) C_ RR ) |
| 98 | uncom | |- ( ( A (,) B ) u. { B } ) = ( { B } u. ( A (,) B ) ) |
|
| 99 | 98 | difeq1i | |- ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) = ( ( { B } u. ( A (,) B ) ) \ ( A (,) B ) ) |
| 100 | difun2 | |- ( ( { B } u. ( A (,) B ) ) \ ( A (,) B ) ) = ( { B } \ ( A (,) B ) ) |
|
| 101 | 99 100 | eqtri | |- ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) = ( { B } \ ( A (,) B ) ) |
| 102 | difss | |- ( { B } \ ( A (,) B ) ) C_ { B } |
|
| 103 | 101 102 | eqsstri | |- ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) C_ { B } |
| 104 | ovolsn | |- ( B e. RR -> ( vol* ` { B } ) = 0 ) |
|
| 105 | 67 104 | syl | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( vol* ` { B } ) = 0 ) |
| 106 | ovolssnul | |- ( ( ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) C_ { B } /\ { B } C_ RR /\ ( vol* ` { B } ) = 0 ) -> ( vol* ` ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) ) = 0 ) |
|
| 107 | 103 96 105 106 | mp3an2i | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( vol* ` ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) ) = 0 ) |
| 108 | ssun1 | |- ( ( A (,) B ) u. { B } ) C_ ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) |
|
| 109 | 108 88 | sseqtrid | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( A (,) B ) u. { B } ) C_ ( A (,) C ) ) |
| 110 | 109 | sselda | |- ( ( ( ph /\ ( A < B /\ B < C ) ) /\ x e. ( ( A (,) B ) u. { B } ) ) -> x e. ( A (,) C ) ) |
| 111 | 110 90 | syldan | |- ( ( ( ph /\ ( A < B /\ B < C ) ) /\ x e. ( ( A (,) B ) u. { B } ) ) -> D e. CC ) |
| 112 | 93 97 107 111 | itgss3 | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( ( x e. ( A (,) B ) |-> D ) e. L^1 <-> ( x e. ( ( A (,) B ) u. { B } ) |-> D ) e. L^1 ) /\ S. ( A (,) B ) D _d x = S. ( ( A (,) B ) u. { B } ) D _d x ) ) |
| 113 | 112 | simpld | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( x e. ( A (,) B ) |-> D ) e. L^1 <-> ( x e. ( ( A (,) B ) u. { B } ) |-> D ) e. L^1 ) ) |
| 114 | 91 113 | mpbid | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( x e. ( ( A (,) B ) u. { B } ) |-> D ) e. L^1 ) |
| 115 | 6 | adantr | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( x e. ( B (,) C ) |-> D ) e. L^1 ) |
| 116 | 85 89 90 114 115 | itgsplit | |- ( ( ph /\ ( A < B /\ B < C ) ) -> S. ( A (,) C ) D _d x = ( S. ( ( A (,) B ) u. { B } ) D _d x + S. ( B (,) C ) D _d x ) ) |
| 117 | 112 | simprd | |- ( ( ph /\ ( A < B /\ B < C ) ) -> S. ( A (,) B ) D _d x = S. ( ( A (,) B ) u. { B } ) D _d x ) |
| 118 | 117 | oveq1d | |- ( ( ph /\ ( A < B /\ B < C ) ) -> ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) = ( S. ( ( A (,) B ) u. { B } ) D _d x + S. ( B (,) C ) D _d x ) ) |
| 119 | 116 118 | eqtr4d | |- ( ( ph /\ ( A < B /\ B < C ) ) -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) |
| 120 | 119 | ex | |- ( ph -> ( ( A < B /\ B < C ) -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) |
| 121 | 36 60 120 | ecased | |- ( ph -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) |